首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
北师大版(2012)
>
九年级上册
>
第四章 图形的相似
>
4 探索三角形相似的条件
>
第四章图形的相似4探索三角形相似的条件第2课时相似三角形的判定2教案(北师大版九年级上册)
第四章图形的相似4探索三角形相似的条件第2课时相似三角形的判定2教案(北师大版九年级上册)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/3
2
/3
剩余1页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第2课时相似三角形的判定(2)1.掌握相似三角形的判定定理,并能与性质定理、定义综合应用.2.理解并掌握判定定理与性质定理的区别与联系.3.学会从题设或结论出发寻求论证思路的分析方法,提高分析问题、解决问题的能力.4.在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.【教学重点】掌握判定定理,会运用判定定理判定两个三角形相似.【教学难点】会准确的运用两个三角形相似的条件来判定两个三角形是否相似.一、情境导入,初步认识问题:(1)相似三角形的定义是什么?三边成比例,三角分别相等的两个三角形相似.(2)判断两个三角形相似,你有哪些方法?方法1:通过定义(不常用);方法2:通过平行线(条件特殊,使用起来有局限性);方法3:判定定理1,两角分别相等的两个三角形相似.【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知识的欲望.二、思考探究,获取新知1.完成教材P91的做一做.【教学说明】老师引导学生分析、讨论得出结果,学生口述证明过程,老师板书.【归纳结论】两边成比例且夹角相等的两个三角形相似.2.已知:,∠B=∠B′.求证:△ABC∽△A′B′C′.证明:过点B′在B′A′上取线段AB的长,同理过点B′在B′C′上取线段BC的长,连接AC.∵,则AC//A′C′,∴∠BAC=∠B′A′C′,∠BCA=∠B′C′A′∴△ABC∽△A′B′C′.3 【教学说明】用已学过的知识解题,并通过解题结论证明定理.三、运用新知,深化理解1.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=4,BC=5,A′C′=8,B′C′=10.解:∵∴又∵∠C=∠C′=90°,故△ABC∽△A′B′C′.2.已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长.分析:由于已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明两三角形相似.再利用相似三角形的性质得出关于AD的比例式,从而求出AD的长.解:由已知条件可以得出:,又∠B=∠ACD,根据判定定理2可得出:△ABC∽△DCA,∴,又AC=5,BC=4,∴.3.如图,已知△ABD∽△ACE.求证:△ABC∽△ADE.分析:由于△ABD∽△ACE,则∠BAD=∠CAE,因此∠BAC=∠DAE,再进一步证明,则问题得证.3 证明:∵△ABD∽△ACE,∴∠BAD=∠CAE.又∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAC=∠DAE.∵△ABD∽△ACE,∴.在△ABC和△ADE中,∵∠BAC=∠DAE,,∴△ABC∽△ADE.4.如图,小明为了测量一高楼MN的高,在离N点20m的A处放了一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点,若AC=1.5m,小明的眼睛离地面的高度为1.6m,请你帮助小明计算一下楼房的高度(精确到0.1m).分析:根据物理学定律:光线的入射角等于反射角,这样,△BCA与△MNA的相似关系就明确了.解:∵BC⊥CA,MN⊥AN,∠BAC=∠MAN,所以△BCA∽△MNA.所以MN∶BC=AN∶AC,即MN∶1.6=20∶1.5.所以MN=1.6×20÷1.5≈21.3(m).5.已知:如图,在△ABC中,AB=AC,∠A=36°,BD是角平分线,试利用三角形相似的关系说明AD2=DC·AC.分析:有一个角是36°的等腰三角形,它的底角是72°,而BD是底角的平分线,∴∠CBD=36°,则可推出△ABC∽△BCD,进而由相似三角形对应边成比例推出线段之间的比例关系.证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴AD=BD=BC,且△ABC∽△BCD,∴BC∶AB=CD∶BC,∴BC2=AB·CD,即AD2=AC·CD.【教学说明】能够运用所学的判定方法解决简单问题.四、师生互动,课堂小结这节课你有哪些收获?1.布置作业:教材“习题4.6”中第1、2题.2.完成练习册中相应练习.本节课主要运用问题引入和与学生共同探究讨论的教学方法,激发学生的论证思维并提高学生分析问题.解决问题的能力.3
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
第四章图形的相似4.4探索三角形相似的条件第1课时利用两角判定三角形相似课件(北师大版)
第四章图形的相似4.4探索三角形相似的条件第2课时利用两边及夹角判定三角形相似课件(北师大版)
第四章图形的相似4.4探索三角形相似的条件第3课时利用三边判定三角形相似课件(北师大版)
第四章图形的相似4.4探索三角形相似的条件第4课时黄金分割课件(北师大版)
第四章图形的相似4.4探索三角形相似的条件第1课时利用两角判定三角形相似教案(北师大版九上)
第四章图形的相似4.4探索三角形相似的条件第2课时利用两边及夹角判定三角形相似教案(北师大版九上)
第四章图形的相似4.4探索三角形相似的条件第3课时利用三边判定三角形相似教案(北师大版九上)
第四章图形的相似4探索三角形相似的条件第2课时相似三角形的判定2课件(北师大版九年级上册)
第四章图形的相似4探索三角形相似的条件第3课时相似三角形的判定3课件(北师大版九年级上册)
第四章图形的相似4探索三角形相似的条件第1课时相似三角形的判定1教案(北师大版九年级上册)
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-11-23 07:10:02
页数:3
价格:¥1
大小:215.50 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划