首页

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

九年级数学上册第二十三章 旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是(  )2.下列说法中正确的有(  )(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是(  )A.△ABC≌△DECB.∠ADC=45°C.AD=ACD.AE=AB+CD(第3题)   (第4题)   (第5题)   (第7题)11 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为(  )A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是(  )A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是(  )A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为(  )A.60°B.90°C.100°D.30°8.如图,点A的坐标为,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为(  )A.B.C.D.(第8题)   (第9题)   (第10题)    (第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD11 顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=,BP=,则DP的长度为(  )A.2B.C.2D.10.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C的坐标为(  )A.(,3)B.(3,-)C.(-,1)D.(1,-)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)   (第14题)   (第15题)   (第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A11 (-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=,求BC边的长.11 21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P11 放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.11 答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB,过点C作CP⊥OA,垂足为P,如图所示.∵AB=CB,OA=OC,OB=OB,∴△AOB≌△COB(SSS).∴∠AOB=∠COB=∠AOC=30°.在Rt△AOB中,AB=2,∠AOB=30°,∴OB=2AB=4.∴OA==2.∴OC=2.在Rt△COP中,∠POC=60°,∴∠OCP=30°.∴OP=OC=.∴CP==3.∴点C的坐标为(,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C的位置和最开始时点C的位置相同.∴第2025次旋转结束时,点C的坐标为(,3).故选A.二、11.60 12.(-1,2) 13.(1)△EDB (2)8 14.-15.4-16.(1)40° (2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA=OB=OP,进而得∠OBP=11 ∠OPB,然后根据三角形外角的性质得到∠OBP=∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG=65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB==5,∴DE=5.18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.11 ∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=,所以()2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C 点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.11 ∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH中,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°.23.解:(1)①= ②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11 ∴∠CPN+∠NPB=90°,∠ABP=∠C.∵MP⊥PN,∴∠BPM+∠NPB=90°.∴∠BPM=∠CPN.在△MPB和△NPC中,∴△MPB≌△NPC(ASA).∴PM=PN.(3)不变.∵S△ABC=4,O是AC的中点,P在O处,∴S△BCP=S△ABC=2.由(2)知△MPB≌△NPC,∴三角尺PEF与△ABC重叠部分的面积=△MPB的面积+△BON的面积=△NPC的面积+△BON的面积=△BCP的面积=2.11

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2024-08-23 10:12:09 页数:11
价格:¥3 大小:269.32 KB
文章作者:浮城3205426800

推荐特供

MORE