首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
沪科版(2012)
>
九年级下册
>
第24章 圆
>
本章复习与测试
>
2025年春九年级数学下册 第24章综合测试卷(沪科版)
2025年春九年级数学下册 第24章综合测试卷(沪科版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/14
2
/14
剩余12页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2025年春九年级数学下册第24章综合测试卷(沪科版)一、选择题(本大题共10小题,每小题4分,共40分)1.下列天气图形符号中是中心对称图形的是( )2.如果圆O的直径为8cm,点P到圆心O的距离为5cm,那么点P与圆O的位置关系是( )A.点P在圆O外B.点P在圆O上C.点P在圆O内D.不能确定3.如图,在平面直角坐标系xOy中,点P的坐标为(-3,0),以点P为圆心,2为半径的⊙P以每秒2个单位的速度沿x轴正方向移动,移动时间为ts,当⊙P与y轴相切时,t的值为( )A.0.5B.1C.0.5或2.5D.1或3(第3题) (第4题)4.如图,将△ABC绕点P按顺时针方向旋转90°得到△A′B′C′,则点P的坐标是( )A.(1,1)B.(1,2)C.(1,3)D.(1,4)5.图①是一个球形烧瓶,图②是从正面看这个球形烧杯下半部分的示意图,已知⊙O的半径OA=5cm,瓶内液体的最大深度CD=2cm,则⊙O的弦AB长为( )A.4cmB.6cmC.8cmD.8.4cm14 6.用反证法证明时,假设结论“点在圆上”不成立,那么点与圆的位置关系可能是( )A.点在圆内B.点在圆上C.点在圆外D.点在圆内或圆外7.如图,AB是⊙O的直径,点E,C在⊙O上,点A是弧EC的中点,过点A作⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=58°,则∠ACE的度数为( )A.58°B.42°C.32°D.29° (第7题)(第8题)8.如图,⊙O的周长为6π,则该圆内接正六边形ABCDEF的边心距OG等于( )A.3B.C.D.39.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是( )A.216°B.90°C.135°D.108°10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ,当∠ADQ=90°时,AQ的最大值为( )A.2B.C.5D.二、填空题(本大题共4小题,每小题5分,共20分)11.如图,AB,CD是⊙O的两条弦,若∠AOB=∠COD,AB=2,则CD=________.12.如图,△ABC外接圆的圆心的坐标是__________.14 13.如图,已知四边形ABCD是⊙O的内接四边形,∠AOC=100°,则∠ADC=________. (第13题) (第14题)14.如图,已知在Rt△ABC中,∠B=90°,AB=6,AC=10,点P是Rt△ABC的内心.(1)点P到边AB的距离为________;(2)点Q是Rt△ABC的外心,连接PQ,则PQ的长为__________.三、(本大题共2小题,每小题8分,共16分)15.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ADC=26°,求∠CAB的度数.14 16.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°所得的△A2B2C1.四、(本大题共2小题,每小题8分,共16分)17.如果从半径为5cm的圆形纸片上剪去弧长为14 圆周长的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),求这个圆锥的高.18.如图,在△ABC中,D是BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是不是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求⊙O的直径.五、(本大题共2小题,每小题10分,共20分)19.如图,正六边形ABCDEF的边长为2,求该正六边形的外接圆与其内切圆所形成的圆环的面积.14 20.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.若DE=3,BD-AD=2.(1)求⊙O的半径;(2)求弦AE的长.14 六、(本题满分12分)21.如图,已知点A,B,C,D均在已知圆上,AD∥BC,CA平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1)求此圆的半径;(2)求图中阴影部分的面积.七、(本题满分12分)22.如图,PA是⊙O的切线,切点为A,点M在PA上,连接MO交⊙O于点D.(1)尺规作图:过点P作⊙O的另一条切线PB,切点为B(保留作图痕迹,不写作法);(2)若MO∥PB,PA=9,DM=2,求⊙O的半径.14 八、(本题满分14分)23.如图,⊙O是△ABC的外接圆,AB是直径,OD∥AC,OD交⊙O于点E,且∠CBD=∠COD.作CF⊥AB于点F,连接AD交CF于点G.(1)求证:BD是⊙O的切线;(2)若E为线段OD的中点,判断以O,A,C,E为顶点的四边形的形状,并证明;(3)求的值.14 答案一、1.B 2.A 3.C 4.B 5.C 6.D 7.C8.C 点拨:设⊙O的半径为R,则2πR=6π,∴R=3.连接OC和OD,则OC=OD=3.∵六边形ABCDEF是正六边形,∴∠COD==60°,∴△OCD是等边三角形,∴CD=OC=3.又∵OG⊥CD,∴CG=CD=,∴OG===.9.A 10.D二、11.2 12.(4,6) 13.130°14.(1)2 (2) 点拨:(1)如图,连接AP,BP,CP,过点P分别作PD⊥AB,PE⊥BC,PF⊥AC于点D,E,F.在Rt△ABC中,∵∠ABC=90°,AB=6,AC=10,∴BC==8.∵点P是Rt△ABC的内心,∴PD=PE=PF.∵S△ABC=BC·AB=×8×6=24,∴×PD×6+×PE×8+×PF×10=24,∴PD=2,∴点P到边AB的距离为2.(2)由(1)知PD=PE=PF=2,∴易得四边形BEPD是正方形,∴BD=2.∵AB=6,∴AD=4.14 ∵点P是Rt△ABC的内心,∴易得AF=AD=4.∵点Q是Rt△ABC的外心,∴AQ=AC=5,∴FQ=1,在Rt△FPQ中,根据勾股定理得PQ===.三、15.解:连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵∠ABC=∠ADC=26°,∴∠CAB=90°-26°=64°.16.解:(1)如图所示,△A1B1C1即为所作,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所作.四、17.解:∵从半径为5cm的圆形纸片上剪去弧长为圆周长的一个扇形,∴留下的扇形的弧长为=8π(cm).∵圆锥底面圆的周长等于留下的扇形弧长,∴圆锥的底面圆的半径为=4(cm),∴圆锥的高为=3(cm).18.解:(1)直线AC是⊙O的切线.理由如下:如图,连接OA.14 ∵BD为⊙O的直径,∴∠BAD=90°,∴∠OAB+∠OAD=90°.∵OA=OB,∴∠OAB=∠ABC.又∵∠CAD=∠ABC,∴∠OAB=∠CAD,∴∠OAD+∠CAD=90°,∴OA⊥AC.又∵OA是⊙O的半径,∴直线AC是⊙O的切线.(2)由(1)知OA⊥AC,在Rt△OAC中,由勾股定理得OC2=AC2+OA2,设OA=OD=x,则OC=OD+CD=x+2,∴(x+2)2=42+x2,∴x=3,∴OA=3,∴BD=2OA=6,∴⊙O的直径为6.五、19.解:连接OA,OB,过点O作OM⊥AB于点M,如图所示.易得∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=2,∴AM=AB=1,∴OM==,即正六边形外接圆的半径为2,内切圆的半径为,∴圆环的面积=π[22-()2]=π.20.解:(1)∵AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C,∴CD=DE=3.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又∵AB=AC,∴BD=CD=3.∵BD-AD=2,∴AD=1.14 在Rt△ABD中,AB==,∴⊙O的半径为.(2)由(1)知AB=,BD=CD=3,∴AC=,BC=BD+CD=6,∵∠E=∠B,∠C=∠C,∴△EDC∽△BAC,∴=,∴=,∴CE=,∴AE=CE-AC=-=.六、21.解:(1)∵AD∥BC,∠ADC=120°,∴∠BCD=60°,∠DAC=∠ACB,∠B=60°,∴=.∵CA平分∠BCD,∴∠DCA=∠ACB=30°,∴==,∠BAC=180°-∠B-∠ACB=90°,∴BC是圆的直径,BC=2AB,AB=AD=CD.∵四边形ABCD的周长为10,∴易得AB=AD=DC=2,BC=4.∴此圆的半径为2.(2)设BC的中点为O.由(1)可知点O即为圆心,如图所示,连接OA,OD,过点O作OE⊥AD于点E.易知OA=OD=AD=2,∴△AOD是等边三角形,∴∠AOD=∠OAD=60°,∴OE=OA·sin∠OAD=OA·sin60°=.14 ∴S阴影=S扇形AOD-S△AOD=-×2×=-.七、22.解:(1)如图所示,PB即为所求.(2)如图所示,连接OA.∵MO∥PB,∴∠MOP=∠BPO.∵PA,PB是⊙O的切线,∴∠APO=∠BPO,OA⊥PA,∴∠MPO=∠MOP,∴OM=PM,设⊙O的半径是r,则PM=OM=OD+DM=r+2,∴AM=PA-PM=9-(r+2)=7-r.在Rt△AOM中,AO2+AM2=OM2,∴r2+(7-r)2=(r+2)2,解得r=3或r=15(舍去),∴⊙O的半径是3.八、23.(1)证明:∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACO+∠OCB=90°.∵OD∥AC,∴∠ACO=∠COD.又∵∠CBD=∠COD,∴∠ACO=∠CBD.∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠CBD=90°,∴∠ABD=90°,∴OB⊥BD.∵OB是⊙O的半径,14 ∴BD是⊙O的切线.(2)解:四边形OACE是菱形.证明:连接BE.∵E是线段OD的中点,∠OBD=90°,∴BE=OE,∴OB=OE=EB,∴△OBE为等边三角形,∴∠BOE=60°.又∵OD∥AC,∴∠OAC=60°.∵OA=OC,∴△OAC为等边三角形,∴AC=OA,∴AC=OE.又∵AC∥OE,∴四边形OACE是平行四边形.∵OA=OE,∴四边形OACE是菱形.(3)解:∵CF⊥AB,∴∠AFC=90°,∴∠AFC=∠OBD,∴FG∥BD.∵OD∥AC,∴∠CAF=∠DOB,∴△AFC∽△OBD,∴=,∴FC=.∵FG∥BD,∴△AFG∽△ABD,∴=,∴FG=,∴易得==.14
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2025年春九年级数学下册 第24章综合测试卷(沪科版)
文档下载
收藏
所属:
初中 - 数学
发布时间:2024-12-17 10:26:04
页数:14
价格:¥3
大小:265.71 KB
文章作者:浮城3205426800
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划