首页

初中数学新北师大版七年级下册全册教案(2025春)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/163

2/163

剩余161页未读,查看更多内容需下载

北师大版七年级数学下册教学设计2025春162 第一章整式的乘除1同底数幂的乘法【教学目标】1.理解同底数幂的乘法法则,能熟练运用该法则解决与之相关的一些数学问题.2.经历探索同底数幂乘法运算法则的过程,培养学生观察、猜想、推理和归纳的能力.3.通过同底数幂的乘法法则的探索过程使学生感受到由特殊到一般再到特殊的数学思想,通过合作学习激发学生的探索热情,感受到成功的喜悦.【教学重点】同底数幂的乘法法则的探索过程和理解应用.【教学难点】同底数幂的乘法法则的理解.【教学过程】一、情景导入,初步认知1.乘方:2.光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?[教学说明]以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论.二、思考探究,获取新知1.计算下列各式:(1)102×103;(2)105×108;(3)10m×10n(m,n都是正整数).你发现了什么?[教学说明]小组合作探究,对于有的同学可能会由上面的分析感觉到了规律的存在,可鼓励他们进行验证.请部分学生代表说出自己小组的观点,其他组同学则进行评价或发表不同的见解.2.2m×2n等于什么?呢?(m,n都是正整数)[教学说明]猜想,交流,验证,口答.3.合作交流:am·an等于什么?(m,n都是正整数)4.引导学生剖析法则.(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)你能总结同底数幂的乘法的法则吗?162 [教学说明]猜想,交流,验证,口答.[归纳结论]am·an=am+n(m,n都是正整数)同底数幂相乘,底数不变,指数相加.三、运用新知,深化理解1.见教材P3例1、例2.2.计算:(1)-b3·b2(2)(-a)·a3(3)(-y)2·(-y)3(4)(-a)3·(-a)4(5)-34×32(6)(-5)7×(-5)6(7)(-q)2n·(-q)3(8)(-m)4·(-m)2(9)-23(10)(-2)4×(-2)5(11)-b9·(-b)6(12)(-a)3·(-a3)答案:(1)-b5(2)-a4(3)-y5(4)-a7(5)-729(6)-513(7)-q2n+3(8)m6(9)-8(10)-512(11)-b15(12)a63.下面的计算对不对?如果不对,应怎样改正?(1)23×32=65;(2)a3+a3=a6;(3)yn·yn=2y2n;(4)m·m2=m2;(5)(-a)2·(-a2)=a4;(6)a3·a4=a12;(7)(-4)3=43;(8)7×72×73=76;(9)-22=-4;(10)n+n2=n3.4.计算:5.计算:(结果可以化成以(a+b)或(a-b)为底时幂的形式).(1)(a-b)2·(a-b)3·(a-b)4(2)(a+b)m+1·(a+b)+(a+b)m·(a+b)2答案:(1)(a-b)9(2)2(a+b)m+26.我国自行研制的“神威”计算机的峰值运算速度达到每秒3840亿次.如果按这个速度工作一整天,那么它能运算多少次(结果保留3个有效数字)?提示:3840亿次=3.84×103×108次、24时=24×3.6×103秒解:(3.84×103×108)×(24×3.6×103)=(3.84×24×3.6)×(103×108×103)=331.776×162 1014≈3.32×1016(次)答:它能运算约3.32×1016次.[教学说明]给学生充足的思维空间,养成独立思考习惯,让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯.四、师生互动,课堂小结先小组内交流收获和感想再以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题1.1”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】2幂的乘方与积的乘方第1课时幂的乘方【教学目标】1.学习幂的乘方的运算性质,进一步体会幂的意义,并能解决实际问题.2.经历探索幂的乘方运算性质的过程,发展推理能力和有条理的表达能力,提高解决问题的能力.3.体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.【教学重点】会进行幂的乘方的运算.【教学难点】幂的乘方法则的总结及运用.【教学过程】一、情景导入,初步认知复习已学过的幂的意义及幂的运算法则.1.幂的意义是什么?2.同底数幂的乘法的法则是什么?根据已经学习过的知识,带领学生回忆并探讨以下实际问题:(1)乙正方体的棱长是2cm,则乙正方体的体积V乙=______cm3.甲正方体的棱长是乙正方体的5倍,则甲正方体的体积V=______cm3.(2)乙球的半径为3cm,则乙球的体积V乙=________cm3(球的体积公式是V=πr3,其中V是体积,r是球的半径)甲球的半径是乙球的10倍,则甲球的体积V甲=______cm3.如果甲球的半径是乙球的n倍,那么甲球体积是乙球体积的______倍.(3)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的______倍和______倍.162 [教学说明]在实际教学过程中应本着从学生实际出发的原则,首先从学生最为熟悉的正方体体积入手,通过具体数字来研究问题,这是良策.进而告知学生球的体积公式,给出具体数字再去研究.二、思考探究,获取新知1.通过问题情境继续研究:为什么(102)3=106?[教学说明]让学生清楚运算之间的关系,题目所描述的是10的2次幂的三次方,其底数是幂的形式,然后根据幂的意义展开运算,去探究运算的过程.2.计算下列各式,并说明理由.(1)(62)4;(2)(a2)3;(3)(am)2;(4)(am)n.[教学说明]学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太大,要让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,有成功的体验.3.观察结果中幂的指数与原式中幂的指数及乘方的指数,想一想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?你能总结这个规律吗?[教学说明]培养学生从“一般”到“特殊”再到“一般”的研究问题方法和概括归纳能力.[归纳结论]幂的乘方的法则:(am)n=amn(当m、n都是正整数)幂的乘方,底数不变,指数相乘.三、运用新知,深化理解1.见教材P6例12.计算:(1)(75)4=______;(2)75×74=______;(3)(x5)2=______;(4)x5·x2=______;(5)[(-7)4]5=______;(6)[(-7)5]4=______.答案:(1)720(2)79(3)x10(4)x7(5)720(6)7203.你能说明下面每一步计算的理由吗?将它们填在括号里.答案:(1)幂的乘方法则同底数幂的乘法法则(2)幂的乘方法则合并同类项法则4.计算下列各式.162 5.若│a-2b│+(b-2)2=0,求a5b10的值.解:∵│a-2b│≥0,(b-2)2≥0,且│a-2b│+(b-2)2=0.∴│a-2b│=0,(b-2)2=0,6.若xm·x2m=2,求x9m.解:x3m=2,x9m=(x3m)3=23=8.7.已知a=3555,b=4444,c=5333,试比较a,b,c的大小.解:∵a=3555=35×111=(35)111=243111,b=4444=44×111=(44)111=256111.c=5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111.即b>a>c.8.化简-{-[(-a2)3]4}2解:-{-[(-a2)3]4}2=-{-[-a6]4}2=-{-a24}2=-a48[教学说明]培养学生对新知识的灵活运用能力.四、师生互动,课堂小结1.(am)n=am·n(m、n是正整数),这里的底数a,可以是数、是字母,也可以是代数式;这里的指数是指幂指数及乘方的指数.2.对于同底数幂的乘法、幂的乘方、要理解它们的联系与区别.在利用法则解题时,要正确选用法则,防止相互之间发生混淆(如:am·an=am+n,(am)n=amn).并逐步培养自己“以理驭算”的良好运算习惯.五、教学板书【课后作业】162 1.布置作业:教材“习题1.2”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时积的乘方【教学目标】1.经历探索积的乘方的运算性质的过程,进一步体会幂的意义.2.了解积的乘方的运算性质,并能解决一些实际问题.3.在探索积的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.4.在发展推理能力和有条理的语言和符号表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.【教学重点】会进行积的乘方的运算.【教学难点】正确区别幂的乘方与积的乘方的异同.【教学过程】一、情景导入,初步认知1.复习前几节课学习的有关幂的三个知识点:①幂的意义.②同底数幂的乘法运算法则am·an=am+n(m、n为正整数).③幂的乘方运算法则(am)n=amn(m、n都是正整数).2.计算:(1)-a2·a6;(2)(-x)·(-x)3;(3)(103)3;(4)(-p)·(-p)4;(5)(a2)3·(a3)2;(6)(a4)6-(a3)8.[教学说明]参与回顾旧知识为新课作准备.二、思考探究,获取新知1.地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么V=πr3.地球的半径约为6×103千米,它的体积大约是多少立方千米?根据公式可知:V=r3=π(6×103)3那么(6×103)3=?2.仿照第(1)小题,计算(2)(3)题:(1)23×53;解:原式=(2×2×2)×(5×5×5)=(2×5)×(2×5)×(2×5)=(2×5)3(2)28×58;(3)212×512.从以上的计算中,我们发现了什么?[教学说明]通过对以上特别的计算,学生能归纳出:an·bn=(a·b)n.3.做一做:162 4.你能根据幂的意义和乘法的运算律推出公式吗?你能用自己的语言描述该性质的特点吗?[归纳结论]an·bn=(a·b)n(n为正整数)积的乘方等于每一个因式乘方的积.[教学说明]在实践中探索新知,进一步学会总结运算中的规律.三、运用新知,深化理解1.见教材P7例2.2.计算下列各式,结果是x8的是(D)3.下列各式中计算正确的是(C)4.计算(-x2)3的结果是(C)A.-x5B.x5C.-x6D.x65.下列四个算式中:①(a3)3=a3+3=a6;②[(b2)2]2=b2×2×2=b8;③[(-x)3]4=(-x)12=x12;④(-y2)5=y10,正确的算式有(C)A.0个B.1个C.2个D.3个6.计算下列各式.7.已知:2x+3y-4=0,求4x·8y的值.解:因为,2x+3y-4=0,所以2x+3y=4.所以4x·8y=22x×23y=22x+3y=24=16.8.已知:9n+1-32n=72,求n的值.解:由9n+1-32n=72得32n+2-32n=72,9×32n-32n=72,8×32n=72,32n=9,所以n=1.9.若a=255,b=344,c=433,比较a、b、c的大小.解:因为a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,所以a<c<b.[教学说明]162 在练习中巩固所学知识,体现数学的具体应用.四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题1.3”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】3同底数幂的除法第1课时同底数幂的除法【教学目标】1.会进行同底数幂的除法运算,并能解决一些实际问题,了解零指数幂和负整数指数幂的意义,能进行零指数幂和负整数指数幂的乘除法运算.2.经历探索同底数幂除法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等教学活动,体验解决问题方法的多样性,发展学生的合情推理和演绎推理能力以及有条理的表达能力.3.在解决问题的过程中了解数学的价值,体会数学的抽象性、严谨性和广泛性.【教学重点】会进行同底数幂的除法运算.【教学难点】同底数幂的除法运算法则的总结及运用.【教学过程】一、情景导入,初步认知1.前面我们学习了哪些幂的运算?在探索法则的过程中我们用到了哪些方法?(1)同底数幂相乘,底数不变,指数相加.am·an=am+n(m,n是正整数).(2)幂的乘方,底数不变,指数相乘.(am)n=amn(m,n是正整数).(3)积的乘方等于积中各因数乘方的积.(ab)n=an·bn(n是正整数).[教学说明]学习同底数幂的除法要借助前面三种幂的运算的活动经验和知识基础,因此这个环节的目的是回顾前面的知识和方法,为下面自主探索,归纳法则做好铺垫.2.一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死109个此种细菌.(1)要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?(2)你是怎样计算的?(3)你能再举几个类似的算式吗?(4)这些算式应该叫做什么运算呢?[教学说明]162 用实际背景来引入同底数幂的除法,让学生体会数学与现实生活的紧密联系,而这个问题学生运用有理数知识就能解决,为下面类比解决“式”的问题提供思路,第(3)问的目的是帮助学生抓住“同底数幂”“相除”这些本质特征,同时也为进一步的探索提供素材.二、思考探究,获取新知探究1:同底数幂的除法1.计算下列各式,并说明理由(m>n)(1)108÷105;(2)10m÷10n;(3)(-3)m÷(-3)n.2.探究:am÷an=?由幂的定义可知你能从中归纳出同底数幂除法的法则吗?[教学说明]让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,提高学生类比、归纳、符号演算、推理能力和有条理的表达能力.[归纳结论]am÷an=am-n(a≠0,m,n是正整数,且m>n)同底数幂相除,底数不变,指数相减.探究2:负整数指数幂1.做一做:104=10000,24=1610()=1000,2()=810()=100,2()=410()=10,2()=22.猜一猜:下面的括号内该填入什么数?你是怎么想的?与同伴交流:3.你有什么发现?能用符号表示你的发现吗?4.你认为这个规定合理吗?为什么?[教学说明]让学生完整的经历观察、归纳、猜想、解释的过程,从而感悟到先由具体问题概括出结论,再通过一般性证明来说明结论的合理性这样一个解决问题的方法,数学合情推理和演绎推理能力的培养就蕴含在这样的思维过程之中.同时,不同的解释思路可以帮助学生从不同的角度,更好地理解零指数幂、负整数指数幂的意义.[归纳结论]a0=1(a≠0)162 a-p=(a≠0,p是正整数)三、运用新知,深化理解1.见教材P10例1、例22.计算:3.若式子(2x-1)0有意义,求x的取值范围.分析:由零指数幂的意义可知,只要底数不等于零即可.解:由2x-1≠0,得x≠,即,当x≠时,(2x-1)0有意义.4.计算:5.计算:(1)(a8)2÷a8;(2)(a-b)2(b-a)2n÷(a-b)2n-1.解:(1)(a8)2÷a8=a16÷a8=a16-8=a8;(2)(a-b)2(b-a)2n÷(a-b)2n-1=(a-b)2(a-b)2n÷(a-b)2n-1=(a-b)2+2n-(2n-1)=(a-b)36.计算下列各式,并把结果化为只含有正整数指数幂的形式.分析:(1)正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y).(x-y)看成一个整体进行运算.162 162 [教学说明]在教学时应重视对算理的理解,每一小题都应先让学生判断是不是同底数幂的除法运算,再说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力四、师生互动,课堂小结1.这节课你学到了哪些知识?2.现在你一共学习了哪几种幂的运算?它们有什么联系与区别?谈谈你的理解.五、教学板书【课后作业】1.布置作业:教材“习题1.4”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时用科学记数法表示绝对值较小的数【教学目标】1.会用科学记数法表示小于1的正数,能进行它们的乘除运算,并将结果用科学记数法表示出来.2.借助自己熟悉的事物感受绝对值较小的数据,进一步培养学生的数感.3.了解数学的价值,体会数学在生活中的广泛应用.【教学重点】用科学记数法表示小于1的正数.【教学难点】用科学记数法表示小于1的正数.【教学过程】162 一、情景导入,初步认知1.纳米是一种长度单位,1米=1,000,000,000纳米,你能用科学记数法表示1,000,000,000吗?2.在用科学记数法表示数据时,我们要注意哪些问题?[教学说明]引导学生回顾如何用科学记数法表示大于10的数以及应注意的问题,为下面类比表示小于1的正数奠定基础.二、思考探究,获取新知1.1纳米=()米这个结果还能用科学记数法表示吗?2.你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?生活中你还见到过哪些较小的数?请把你找到的资料和数据与同伴交流.无论在生活还是在学习中,都会遇到一些较小的数,例如:细胞的直径只有1微米,即0.000001米.某种计算机完成一次运算的时间为1纳秒,即0.000000001s.一个氧原子的质量为0.00000000000000000000000002657千克.那么为了书写方便,能不能用科学记数法来表示这些较小的数呢?[教学说明]让学生从最熟悉的生活场景中查找绝对值较小的数据,符合他们的认知和年龄特点,目的是让学生体会这些数据在生活中的广泛存在,同时在记录数据的过程中学生会感受到书写的复杂性,从而激发他们的学习欲望,借助前面的经验来自主探索更为简便的表示方法.[归纳结论]一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.三、运用新知,深化理解1.-2.040×105表示的原数为(A)A.-204000B.-0.000204C.-204.000D.-204002.用科学记数法表示下列各数.(1)30920000(2)0.00003092(3)-309200(4)-0.000003092分析:用科学记数法表示数时,关键是确定a和n的值.解:(1)原式=3.092×107(2)原式=3.092×10-5(3)原式=-3.092×105(4)原式=-3.092×10-63.用小数表示下列各数.(1)-6.23×10-5;(2)(-2)3×10-8.分析:本题对科学记数法进行了逆向考查,同样,关键是弄清楚n162 的值与小数点之间的变化关系.解:(1)原式=-0.0000623;(2)原式=-8×10-8=-0.00000008.4.(1)原子弹的原料——铀,每克含有2.56×1021个原子核,一个原子核裂变时能放出3.2×10-11J的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm2的芯片上能集成10亿个元件,每一个这样的元件约占多少平方毫米?约多少平方米?(用科学记数法表示)分析:第(1)题直接列式计算;第(2)题要弄清m2和mm2之间的换算关系,即1m=1000mm=103mm,1m2=106mm2,再根据题意计算.解:(1)由题意得2.56×1021×3.2×10-11=2.56×3.2×1021×10-11=8.192×1010J答:每克铀全部裂变时能放出的热量为8.192×1010J的热量.(2)=900×10-9=9×102×10-9=9×10-7(mm2);9×10-7÷106=9×10-7-6=9×10-13(m2)答:每一个这样的元件约占9×10-7mm2;约9×10-13m2.[教学说明]2、3两题通过正反两个方面的运用来巩固学生对科学记数法的理解.四、师生互动,课堂小结1.这节课你学到了哪些知识?2.用科学记数法表示小于1的正数与表示大于10的数有什么相同之处?有什么不同之处?3.用科学记数法表示容易出现哪些错误?你有哪些经验?与同伴交流.五、教学板书【课后作业】1.布置作业:教材“习题1.5中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】4整式的乘法第1课时单项式与单项式相乘【教学目标】1.使学生理解并掌握单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算.2.通过探究单项式与单项式相乘的法则,培养了学生归纳、概括能力,以及运算能力.3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.【教学重点】掌握单项式与单项式相乘的法则.【教学难点】分清单项式与单项式相乘中,幂的运算法则.【教学过程】一、情景导入,初步认知162 京京用同样大小的纸精心制作的两幅画,如图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有18x米的空白,你能表示出两幅画的面积吗?教师提出以下问题,引导学生对两个代数式进行分析:问题1:以上求矩形的面积时,会遇到x·mx,(mx)·x,这是什么运算呢?问题2:什么是单项式?我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法,先学习单项式乘以单项式.[教学说明]以上设计从实际问题出发,引出了单项式乘法,使学生体会到数学知识来源于生活,并能解决生活中的问题.二、思考探究,获取新知继续引导学生分析实例中出现的算式,教师提出以下三个问题:问题1:对于实际问题的结果x·mx,(mx)·mx可以表达得更简单些吗?说说你的理由?问题2:类似地,3a2b·2ab3和(xyz)·y2z可以表达的更简单一些吗?问题3:如何进行单项式与单项式相乘的运算?[教学说明]组织学生先独立思考,再以四人为小组讨论,鼓励学生大胆发表自己的见解,全班共同交流,得出单项式乘法的法则.得出法则后,教师再提出有思维价值的问题,引导学生对探究的过程进行反思,明确算理,体会数学知识之间的联系.[归纳结论]单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.问题4:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?学生回答:运用了乘法的交换律、结合律和同底数幂乘法的运算性质.[教学说明]实际教学中,视学生情况而定,以上四个问题可同时给出,也可以逐一给出.教师通过问题1和问题2,让学生独立思考,自主探究,经历知识形成的过程,在探究中发现和总结出规律,获得体验.教师应鼓励学生灵活运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式的运算法则,并理解算理,在探究的基础上运用自己的语言描述单项式乘法的法则.三、运用新知,深化理解1.见教材P14例1.2.下列运算正确的是(D)162 162 上述过程中有无错误?如果有,请写出正确的解答过程.解:有错误;[教学说明]在学习了单项式乘法法则后,及时通过一组习题和练习帮助学生熟悉法则的应用及每一步的算理,教师引导学生总结出运用单项式相乘的乘法法则时,应注意以下几点:(1)进行单项式乘法,应先确定结果的符号,再把同底数幂分别相乘,这时容易出现的错误是将系数相乘与相同字母指数相加混淆;(2)不要遗漏只在一个单项式中出现的字母,要将其连同它的指数作为积的一个因式;(3)单项式乘法法则对于三个以上的单项式相乘同样适用;(4)单项式乘以单项式,结果仍为单项式.四、师生互动,课堂小结先小组内交流收获和感想,后以小组为单位派代表进行总结,教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题1.6”中第1、2题。2.完成同步练习册中本课时的练习。【教学后记】第2课时单项式与多项式相乘【教学目标】1.在具体情境中了解单项式与多项式乘法的意义,会进行单项式与多项式的乘法运算.2.经历探索单项式与多项式乘法法则的过程,理解单项式与多项式相乘的算理,体会乘法分配律的重要作用及转化的数学思想,发展学生有条理的思考和语言表达能力.3.在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣.【教学重点】会进行单项式与多项式的乘法运算.【教学难点】灵活运用单项式乘以多项式的运算法则.【教学过程】一、情景导入,初步认知1.如何进行单项式乘单项式的运算?你能举例说明吗?2.计算:3.写一个多项式,并说明它的次数和项数.[教学说明]首先引导学生回忆单项式乘单项式的运算法则,目的是为探索单项式乘以多项式法则做好铺垫,因为最终我们要将它转化为单项式乘以单项式,所以这里通过活动1、2来进行回顾十分必要.问题3的设置为今天的新课学习奠定基础.二、思考探究,获取新知探究:宁宁作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了xm的空白,这幅画的画面面积是多少?162 先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程.同学之中主要有两种做法:法一:先表示出画面的长和宽,由此得到画面的面积为x(mx-x);法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为mx2-x2.教师启发学生:两种方法得到的答案不一样,到底哪种方法对?短暂的思考之后,学生回答都对,由此引出x(mx-x)=mx2-x2这个等式.引导学生观察这个算式,并思考两个问题:式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因?学生不难总结出:式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得x(mx-x)=x·mx-x·x,再根据单项式乘单项式法则或同底数幂的乘法性质得到x·mx-x·x=mx2-x2,即x(mx-x)=mx2-x2.[教学说明]从实际问题出发,学生通过对同一面积的不同表达,引出x(mx-x)=mx2-x2这个等式.想一想:问题1:ab·(abc+2x)及c2(m+n-p)等于什么?你是怎样计算的?问题2:如何进行单项式与多项式相乘的运算?[教学说明]设置问题1是让学生获得更充分的体验,为下面顺利归纳单项式与多项式的乘法法则铺平道路.[归纳结论]单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.三、运用新知,深化理解1.见教材P16例2.2.计算:162 5.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解:(1)防洪堤坝的横断面积S=[a+(a+2b)]×a=a2+ab.故防洪堤坝的横断面积为a2+ab平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.6.某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?解:这个多项式是(x2-4x+1)-(-3x2)=4x2-4x+1正确的计算结果是:(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.]7.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,1△3=1×1+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.解:∵x△d=x,∴ax+bd+cdx=x,162 ∴(a+cd-1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得故a的值为5,b的值为0,c的值为-1,d的值为4.[教学说明]通过不同难度的练习题,不断促进学生思考,运用所学知识解决新问题,在解决问题的过程中获得能力的提高.教学中,教师可以通过灵活的评价方式,激励学生挑战多星题,培养学生乐于钻研的精神.四、师生互动,课堂小结单项式与多项式相乘的步骤:①乘法分配律把乘积写成单项式与单项式乘积的代数和的形式;②化为单项式的乘法运算;③所得的积相加.解题时需要注意的问题:①项式乘多项式的积仍是多项式,其项数与原多项式的项数相同;②单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定,多项式中的每一项前面的符号是性质符号,同号相乘得正,异号相乘得负,最后写成省略加号的代数和的形式;②项式要乘以多项式的每一项,不要出现漏乘现象;③④混合运算中,要注意运算顺序,结果有同类项的要合并同类项.五、教学板书【课后作业】1.布置作业:教材“习题1.7”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第3课时多项式与多项式相乘【教学目标】1.在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.162 2.经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.3.在解决问题的过程中了解数学的价值,发展“用数学”的信心.【教学重点】熟悉多项式与多项式乘法法则.【教学难点】理解多项式与多项式相乘的算理.【教学过程】一、情景导入,初步认知1.如何进行单项式乘多项式的运算?你能举例说明吗?2.计算:(1)(3mn)2·(m2+mn-n2);(2)2a2-a(2a-5b)-b(2a-b).[教学说明]单项式乘以多项式运算是多项式乘以多项式运算的基础,所以帮助学生回忆单项式乘多项式的运算非常重要.二、思考探究,获取新知下图1-1是一个长和宽分别为m,n的长方形纸片,如果它的长和宽分别增加a,b,所得长方形(图1-2)的面积可以怎样表示?学生独立思考后,全班交流,主要产生了四种解法:方法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为(m+a)(n+b);方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为mn+mb+an+ab;方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示为n(m+a)+b(m+a),根据上节课单项式乘多项式的法则,结果等于nm+na+bm+ba;方法四:长方形可以看做是由左右两个长方形组成的,左边的长方形面积为m(b+n),右边的长方形面积为a(b+n),这样长方形的面积就可以表示为m(b+n)+a(b+n),根据上节课单项式乘多项式的法则,结果等于mb+mn+ab+an.将四种方法的过程板书到黑板上,由于求的是同一个长方形的面积,于是我们得到:(m+a)(n+b)=n(m+a)+b(m+a)=m(b+n)+a(b+n)=mn+mb+an+ab教师引导学生观察这个等式,并启发性的将等式板书为以下形式:(m+a)(n+b)=n(m+a)+b(m+a)或(m+a)(n+b)=m(b+n)+a(b+n)或(m+a)(n+b)=mn+mb+an+ab[教学说明]引导学生通过观察、实验、类比、归纳获得数学猜想.在上一课时中,学生已经有了利用图形面积探究法则的经验,因此用不同方法计算同一图形面积猜想出多项式乘法法则并不困难,顺利引出新课.观察上面的过程,回答下列问题:1.你能说出(m+a)(n+b)=n(m+a)+b(m+a)这一步运算的道理吗?162 2.结合这个算式(m+a)(n+b)=mn+mb+an+ab,你能说说如何进行多项式与多项式相乘的运算?3.归纳总结多项式与多项式相乘的运算法则.[归纳结论]多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.三、运用新知,深化理解1.见教材P18例3.2.下列说法不正确的是(D)A.两个单项式的积仍是单项式;B.两个单项式的积的次数等于它们的次数之和;C.单项式乘以多项式,积的项数与多项式项数相同;D.多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之和.3.下列多项式相乘的结果是a2-a-6的是(B)A.(a-2)(a+3);B.(a+2)(a-3);C.(a-6)(a+1);D.(a+6)(a-1).4.下列计算正确的是(C)A.a3·(-a2)=a5;B.(-ax2)3=-ax6;C.3x3-x(3x2-x+1)=x2-x;D.(x+1)(x-3)=x2+x-3.5.若(x+m)(x+n)=x2-6x+5,则(A)A.m,n同时为负;B.m,n同时为正;C.m,n异号;D.m,n异号且绝对值小的为正.6.要使(x-3)·M=x2+x+N成立,且M是一个多项式,N是一个整数,则(C)A.M=x-4,N=12;B.M=x-5,N=15;C.M=x+4,N=-12;D.M=x+5,N=-15.7.计算:(1)(3x+1)(x-2);(2)(a2+3)(a-2)-a(a2-2a-2);(3)(x-5)(x+2);(4)(x+5)(x-2);(5)(x-5)(x-2);(6)(x+5)(x+2).答案:(1)3x2-5x-2;(2)5a-6;(3)x2-3x-10;(4)x2+3x-10;(5)x2-7x+10;(6)x2+7x+10.8.若(mx+y)(x-y)=2x2+nxy-y2,求m,n的值.解:左边=mx2-mxy+xy-y2=mx2+(1-m)xy-y2∴m=2,n=1-m∴n=-19.对于任意自然数,试说明代数式n(n+7)-(n-3)(n-2)的值都能被6整除.解:n(n+7)-(n-3)(n-2)=n2+7n-n2+5n-6=12n-6=6(2n-1).因为n为自然数,162 所以6(2n-1)一定是6的倍数.[教学说明]让学生通过不同形式的多项式相乘,灵活应用法则,针对解决不同问题时遇到的问题,积累解题经验.对于掌握程度比较好的学生,需要设置一些具有挑战性的题目,激发他们学习的动力.四、师生互动,课堂小结1.本节课学习了哪些知识?2.领悟到哪些解决问题的方法?感触最深的是什么?3.对于本节课的学习还有什么困惑?五、教学板书【课后作业】1.布置作业:教材“习题1.8”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】5平方差公式第1课时平方差公式的认识【教学目标】1.使学生理解和掌握平方差公式;2.会利用公式进行计算,能够掌握平方差公式的一些应用.3.经历探索平方差公式的过程,增强了数和符号的意识,培养学生发现问题、提出问题的能力.4.在探索和交流的过程中,培养学生与人协作的习惯、质疑的精神.【教学重点】弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点.【教学难点】准确理解和掌握公式的结构特征.【教学过程】一、情景导入,初步认知回顾整式乘法中多项式与多项式相乘:1.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.符号表示:(m+b)(n+a)=mn+ma+bn+ba;2.两项式乘以两项式,结果可能是两项吗?请你举例说明.[教学说明]平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式乘以多项式法则,设计这一环节的目的,是在复习上节课知识的基础上,为本节课的学习做好知识准备.二、思考探究,获取新知162 1.计算下列各式:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(2y+z)(2y-z).2.观察以上算式及其运算结果,你发现了什么规律?[归纳结论]平方差公式:(a+b)(a-b)=a2-b2两数和与两数差的积,等于它们的平方差.[教学说明]在上一环节的基础上,引入形式特殊的多项式乘以多项式,使学生在计算过程中发现规律,体会规律的一般性,提出自己的猜想,并尝试用数学语言进行描述.应用平方差公式的注意应注意些什么呢?(1)注意平方差公式的适用范围;(2)字母a、b可以是数,也可以是整式;(3)注意计算过程中的符号和括号.三、运用新知,深化理解1.见教材P20例1、例2.2.填空题:3.下列式中能用平方差公式计算的有(D)①(x-y)(x+y),②(3a-bc)(-bc-3a),③(3-x+y)(3+x+y),④(100+1)(100-1)A.1个B.2个C.3个D.4个4.下列式中,运算正确的是(C)A.①②B.②③C.②④D.③④5.乘法等式中的字母a、b表示(D)A.只能是数B.只能是单项式C.只能是多项式D.单项式、多项式都可以6.计算:(1)(2a-3b)(2a+3b);解:原式=(2a)2-(3b)2=4a2-9b2(2)(-p2+q)(-p2-q);解:原式=(-p2)2-(q)2=p4-q2(3)(4a-7b)(4a+7b);162 解:原式=(4a)2-(7b)2=16a2-49b2(4)(-2m-n)(2m-n);解:原式=(-n)2-(2m)2=n2-4m27.计算(a+1)(a-1)(a2+1)(a4+1)(a8+1).解:原式=(a2-1)(a2+1)(a4+1)(a8+1)=(a4-1)(a4+1)(a8+1)=(a8-1)(a8+1)=a16-1[教学说明]在深刻理解公式的基础上,借助例题训练学生正确应用公式计算,体会公式在简化运算中的作用,并通过巩固练习,进一步强化技能.四、师生互动,课堂小结1.平方差公式:(a+b)(a-b)=a2-b2公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积;右边是两数的平方差.2.应用平方差公式的注意事项:(1)注意平方差公式的适用范围;(2)字母a、b可以是数,也可以是整式;(3)注意计算过程中的符号和括号.五、教学板书【课后作业】1.布置作业:教材“习题1.9”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时平方差公式的应用【教学目标】1.进一步体会平方差公式的意义,会利用公式进行计算,能够掌握平方差公式的一些应用.2.通过拼图游戏,了解平方差公式的几何背景.3.发展学生的符号感、推理能力和有条理的表达能力.【教学重点】平方差公式的应用.【教学难点】162 平方差公式的应用.【教学过程】一、情景导入,初步认知1.什么是平方差公式?2.判断正误:(1)(a+5)(a-5)=a2-5;(2)(3x+2)(3x-2)=3x2-22;(3)(a-2b)(-a-2b)=a2-4b2;(4)(100+2)(100-2)=1002-22=9996;(5)(2a+b)(2a-b)=4a2-b2.[教学说明]通过对平方差公式的复习,激发兴趣,正确地利用公式.进一步理解公式特征.二、思考探究,获取新知如图,边长为a的大正方形中有一个边长为b的小正方形.1.请表示图1中阴影部分的面积.2.小颖将阴影部分拼成了一个长方形(如图2),这个长方形的长和宽分别是多少?你能表示出它的面积吗?3.比较1,2的结果,你能验证平方差公式吗?4.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.[归纳结论](a+b)(a-b)=a2-b2[教学说明]经过对两个图形的面积的计算,使学生明白可以通过几何图形对平方差公式进行验证.进一步加深对平方差公式的理解.想一想:1.计算下列各组算式,并观察它们的共同特点.2.从以上的过程中,你发现了什么规律?3.请用字母表示这一规律,你能说明它的正确性吗?[归纳结论](a-1)(a+1)=a2-1三、运用新知,深化理解1.见教材P22例3、例4.2.下列运算中,正确的是(C)A.(a+3)(a-3)=a2-3B.(3b+2)(3b-2)=3b2-4C.(3m-2n)(-2n-3m)=4n2-9m2D.(x+2)(x-3)=x2-6162 3.下列多项式的乘法中,可以用平方差公式计算的是(B)A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)4.(1)(2a-b)(2a+b)(4a2+b2);解:原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z);解:原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz(3)403×397;解:原式=(400+3)(400-3)=4002-32=1599915.解方程.6.计算:[教学说明]使学生能灵活运用公式,培养其发散思维和思考问题的严密性,思考角度的多样性四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题1.10”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】6完全平方公式第1课时完全平方公式的认识【教学目标】1.理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算,了解完全平方公式的几何背景.2.经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识.3.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.【教学重点】1.弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;2.会用完全平方公式进行运算.【教学难点】会用完全平方公式进行运算.【教学过程】一、情景导入,初步认知同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?(x+3)2=_________________,(x-3)2=_________________,这些式子的左边和右边有什么规律?再做几个试一试:(2m+3n)2=_________________,(2m-3n)2=_________________.[教学说明]让学生运用多项式乘以多项式的法则进行计算,为本节课学习完全平方公式做准备.二、思考探究,获取新知1.观察下列算式及其运算结果,你有什么发现?(m+3)2=(m+3)(m+3)=m2+3m+3m+9=m2+6m+9(2+3x)2=(2+3x)(2+3x)=4+2×3x+2×3x+9x2=4+12x+9x22.观察上面的计算结果,回答下列问题:(1)原式的特点?两数和的平方.162 (2)结果的项数特点?等于它们平方的和,加上它们乘积的两倍.(3)三项系数的特点?(特别是符号的特点).(4)三项与原多项式中两个单项式的关系.3.再举两例验证你的发现.4.你能用自己的语言叙述这一公式吗?[归纳结论]两数和的平方,等于它们平方的和,加上它们乘积的两倍.即:(a+b)2=a2+2ab+b25.用不同的形式表示图形的总面积,并进行比较,你发现了什么?6.议一议:(a-b)2=?你是怎样做的?7.你能自己设计一个图形解释这一公式吗?并用自己的语言叙述这一公式.[归纳结论]两数差的平方,等于它们平方的和,减去它们乘积的两倍.即:(a-b)2=a2-2ab+b2上面的两个公式称为完全平方公式.8.分析完全平方公式的结构特点,并用语言来描述完全平方公式.结构特点:左边是二项式(两数和(差))的平方;右边是两数的平方和加上(减去)这两数乘积的两倍.语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍.[教学说明]让学生观察、思考、总结、归纳,使之掌握基本的数学活动经验,让学生用文字语言表示公式,提高学生运用数学语言的能力.三、运用新知,深化理解1.见教材P24例1.2.填空题:3.下列各式中哪些可以运用完全平方公式计算(C)A.(a+b)(a+c)B.(x+y)(-y+x)C.(ab-3x)(-3x+ab)D.(-m-n)(m+n)4.计算:162 (3)(4x+0.5)2;解:原式=(4x)2+2×4x×0.5+(0.5)2=16x2+4x+0.25(4)(2x2-3y2)2.解:原式=(2x2)2-2(2x2)(3y2)+(3y2)2=4x4-12x2y2+9y45.利用完全平方公式计算:(1)(-1-2x)2;解:原式=(-1)2-2×(-1)×(2x)+(2x)2=1+4x+4x2(2)(-2x+1)2.解:原式=(-2x)2+2(-2x)×1+12=4x2-4x+1[教学说明]让学生熟悉公式的特征,培养学生的观察、分析、归纳概括的能力;让学生思考.得出结论,可以使学生有效避免出现易错的符号问题.四、师生互动,课堂小结通过本节课的学习,你在知识上有哪些收获,哪些能力得到了提高?引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败.明确以下几点:1.完全平方公式是两数和与两数差的平方公式的统称.2.公式中的a、b可以是任意数或代数式.3.公式的条件是:两数和的平方或两数差的平方.五、教学板书【课后作业】1.布置作业:教材“习题1.11”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时完全平方公式的应用【教学目标】162 1.熟记完全平方公式,能说出公式的结构特征,进一步发展学生的符号感.2.能够运用完全平方公式进行简便运算,体会符号运算对解决问题的作用.3.能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力.4.会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算,感悟换元变换的思想方法,提高灵活应用乘法公式的能力.【教学重点】运用完全平方公式进行一些数的简便运算及综合运用平方差和完全平方公式进行整式的简便运算.【教学难点】灵活运用平方差和完全平方公式进行整式的简便运算.【教学过程】一、情景导入,初步认知复习已学过的完全平方公式.1.完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b22.公式口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减.3.想一想:(1)两个公式中的字母都能表示什么?数或代数式.(2)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?完全平方公式在计算化简中有些什么作用?[教学说明]本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用.二、思考探究,获取新知1.怎样计算1022、1972更简单呢?(1)把1022改写成(a+b)2还是(a-b)2?a、b怎样确定?1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404(2)把1972改写成(a+b)2还是(a-b)2?a、b怎样确定?1972=(200-3)2=2002-2×200×3+32=4000-1200+9=38809[教学说明]能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.2.想一想:有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1)第一天有a个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?[教学说明]数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.162 三、运用新知,深化理解1.见教材P26例2.2.若(x-5)2=x2+kx+25,则k=(D)A.5B.-5C.10D.-103.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为(D)A.4B.2C.-2D.±24.用完全平方公式和平方差公式计算.(1)9.8×10.2;解:原式=(10-0.2)×(10+0.2)=102-0.22=100-0.04=99.96(2)89.82;解:原式=(90-0.2)2=902-2×0.2×90+0.22=8064.04(3)472-94×27+272;解:原式=472-2×47×27+272=(47-27)2=202=400(4)(a+b+c)2;解:原式=[(a+b)+c]2(a+b)2+2(a+b)·c+c2=a2+2ab+b2+2ac+2bc+c2(5)(3x+2y-5z+1)(-3x+2y-5z-1).解:原式=[(2y-5z)+(3x+1)][(2y-5z)-(3x+1)]=(2y-5z)2-(3x+1)2=4y2-9x2+25z2-20yz-6x-15.(1)已知a+b=3,ab=2,求a2+b2.解:a2+b2=(a+b)2-2ab.∵a+b=3,ab=2,∴a2+b2=32-2×2=5.(2)若已知a+b=10,a2+b2=52,ab的值呢?解:∵a+b=10,∴(a+b)2=102,a2+2ab+b2=100,∴2ab=100-(a2+b2).又∵a2+b2=52,∴2ab=100-52,ab=24.7.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;162 32+(3×4)2+42=(3×4+1)2;…(1)写出第2014行的式子;(2)写出第n行的式子,并说明你的结论是正确的.解:(1)(2014)2+(2014×2015)2+(2015)2=(2014×2015+1)2;(2)n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.理由:∵n2+[n(n+1)]2+(n+1)2=n2+n2(n+1)2+n2+2n+1=n2+n2(n2+2n+1)+n2+2n+1=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1.而[n(n+1)+1]2=[n(n+1)]2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,所以n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.[教学说明]使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.四、师生互动,课堂小结1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数.也可以是单项式,还可以是多项式,所以要记得添括号.2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.五、教学板书【课后作业】1.布置作业:教材“习题1.12”中第1.3题.2.完成同步练习册中本课时的练习.【教学后记】7整式的除法第1课时单项式除以单项式【教学目标】1.理解单项式除以单项式的法则,发展有条理的思考及语言表达能力.2.通过引导学生观察、对比、独立思考、合作探究等方式使学生经历探索单项式除以单项式法则的过程,能进行简单的整式除法运算.3.培养独立思考和良好的合作意识,发展数学思维,体会数学的实际价值.【教学重点】掌握单项式除以单项式的运算法则,并学会简单的整式除法运算.【教学难点】162 理解和体会单项式除以单项式的法则.【教学过程】一、情景导入,初步认知1.两数相除,____号得正,____号得负,并把____相除。2.同底数幂的除法法则是什么?3.零指数幂的意义是什么?4.计算:(1)x5·x2÷(x3)2=________;(2)(a-b)6÷(a-b)3=________.[教学说明]引导学生先通过预习,能够复习与单项式除法相关联的知识:有理数的除法,同底数幂的除法等,掌握相关的运算法则是解题的关键.通过预习,能够进行简单的单项式的除法计算.二、思考探究,获取新知1.计算:(1)8m3n2÷2m2n;(2)-36x4y3z2÷4x3z.解:(1)8m3n2÷2m2n=(8÷2)·(m3÷m2)·(n2÷n)=4mn(2)-36x4y3z2÷4x3z=(-36÷4)x4-3·y3·z2-1=-9xy3z2.请同学们认真探讨,在进行单项式的除法时,要怎么做?(1)如何来计算单项式的除法,首先看第1(1)题的系数,系数怎么办?(2)同底数幂怎么办?(3)仅在被除式里含有的字母怎么办,如第1(2)题中的y3?(4)单项式的除法法则是什么?(5)我们要理解记忆运算法则,用自己的话说.系数怎么办?系数相除.(6)同底数幂怎么办?同底数幂相除.(7)其余的怎么办?其余都不变.[教学说明]通过两道探究题目,学生充分探讨后,师生一起总结单项式的除法法则,探究与问题结合,体现探究学习数学法则的重要性,结合有理数的除法法则,同底数幂的除法等相关知识,总结单项式除法法则,以便后面灵活应用法则进行相关的计算.[归纳结论]单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.三、运用新知,深化理解1.见教材P28例12.8x6y4z÷()=4x2y2,括号内应填的代数式为(C).A.2x3y2B.2x3y2zC.2x4y2zD.12x4y2z3.下列计算中,正确的是(D).A.8x9÷4x3=2x3B.4a2b3÷4a2b3=0C.a2m÷am=a2D.2ab2c÷ab2=-4c4.若xmyn÷x3y=4x2则(B).A.m=6,n=1B.m=5,n=1C.m=5,n=0D.m=6,n=05.在等式6a2·(-b3)2÷()2=中的括号内,应填入(D).162 6.计算:7.计算:8.化简求值:将x=-1,y=-2代入上式得原式=-12+16=4.9.地球到太阳的距离约为1.5×108km,光的速度约为3×108m/s,求光从太阳到地球的时间.解:∵1.5×108km=1.5×1011m∴(1.5×1011)÷(3×108)=(1.5÷3)×(1011÷108)=0.5×103=500(s)答:光从太阳到地球的时间为500秒.[教学说明]162 进一步巩固落实单项式除以单项式,提高法则的灵活应用能力和实际应用能力;计算题在保证正确率的前提下,应提高计算速度;应用题的解题过程力求准确规范;课堂练习应由学生独立完成.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题1.13”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时多项式除以单项式【教学目标】1.理解多项式除以单项式的算理,会进行简单的多项式除以单项式运算.2.经历探索多项式除以单项式法则的过程,体会知识之间的联系和转化以及化归的思想方法.3.培养学生分析、思考能力,发展有条理的表达能力.【教学重点】会进行简单的多项式除以单项式的运算.【教学难点】1.商的符号的确定.2.准确运用法则将多项式除以单项式转化为单项式除以单项式.【教学过程】一、情景导入,初步认知复习准备:1.同底数幂的除法.am÷an=am-n(a≠0,m,n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.2.单项式与单项式相除的法则:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式.[教学说明]同底数幂的除法与单项式除法是学习多项式除以单项式的基础,只有熟练掌握同底数幂的除法与单项式除法,才能正确的进行多项式除以单项式的运算.二、思考探究,获取新知1.计算下列各题,说说你的理由.(1)(ad+bd)÷d;(2)(a2b+3ab)÷a;(3)(xy3-2xy)÷(xy).2.总结探究方法.162 方法1:利用乘除法的互逆(1)∵(a+b)·d=ad+bd∴(ad+bd)÷d=a+b(2)∵(ab+3b)·a=a2b+3ab∴(a2b+3ab)÷a=ab+3b(3)∵(y2-2)·xy=xy3-2xy∴(xy3-2xy)÷(xy)=y2-2方法2:类比有理数的除法3.根据上面的探究,你能总结多项式除以单项式的法则吗?[归纳结论]多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.[教学说明]通过让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;发散学生思维,让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;并在这个过程中,培养学生总结归纳知识的能力.三、运用新知,深化理解1.见教材P30例2.2.下列各选项中,计算正确的是(D)3.下列运算中,错误的是(B)5.计算:162 6.化简[(2x+y)2-y(y+4x)-8x]÷2x.解:[(2x+y)2-y(y+4x)-8x]÷2x=(4x2+4xy+y2-y2-4xy-8x)÷2x=(4x2-8x)÷2x=2x-47.某天数学课上,学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道三项式除法运算题:(21x4y3-+7x2y2)÷(-7x2y)=+5xy-y.被除式的第二项被钢笔水弄污了,商的第一项也被钢笔水弄污了,你能算出两处被污染的内容是什么吗?解:商的第一项=21x4y3÷(-7x2y)=-3x2y2;被除式的第二项=-(-7x2y)×5xy=35x3y2.8.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=,b=-1.分析:根据多项式除单项式的法则,平方差公式化简,整理成最简形式,然后把a、b的值代入计算即可162 [教学说明]通过练习对单项式除以单项式的计算进行巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题1.14”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.梳理本章内容,构建知识网络;重点加强对整式的概念,整式的乘除运算,幂的运算性质的复习,并能灵活运用知识解决问题.2.通过梳理本章内容,发展学生的符号感以及合情说理的能力,渗透转化、类比的思想.3.让学生在数学活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.感受数学与现实生活的密切联系,增强学生的数学应用意识.【教学重点】整式的乘除、幂的运算.【教学难点】整式的乘除、幂的运算.【教学过程】一、知识结构162 [教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.幂的运算性质:(1)同底数幂的乘法:am·an=am+n(m,n都是正整数)逆用:am+n=am·an(2)同底数幂的除法:am÷an=am-n(a≠0,m,n都是正整数)逆用:am-n=am÷an(a≠0)(3)幂的乘方:(am)n=amn(m,n都是正整数)逆用:amn=(am)n(4)积的乘方:(ab)n=anbn(m,n都是正整数)逆用,anbn=(ab)n(5)零指数幂:a0=1(注意底数范围a≠0).(6)负指数幂:(a≠0,p是正整数)2.整式的乘除法:(1)单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数.相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式.(2)单项式乘以多项式:m(a+b+c)=ma+mb+mc.法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式乘以多项式:(m+n)(a+b)=ma+mb+na+nb.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(4)单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(5)多项式除以单项式:(a+b+c)÷m=a÷m+b÷m+c÷m.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.3.整式乘法公式:(1)平方差公式:(a+b)(a-b)=a2-b2162 (2)完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2逆用:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.[教学说明]可以采用提问的形式,让学生回答,达到巩固的作用.三、典例精析,复习新知例1下列运算正确的是()A.x3+x3=x6B.2x·3x2=6x3C.(2x)3=6x3D.(2x2+x)÷x=2x解析:A.应为x3+x3=2x3,故本选项错误;B.2x·3x2=6x3,正确;C.应为(2x)3=23x3=8x3,故本选项错误;D.应为(2x2+x)÷x=2x+1,故本选项错误.故选B.例2已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.a<b<cD.b>c>a解析:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选A.例3一个长方体的长、宽、高分别3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8a2D.6a3-8a解析:由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选C.例4已知:2x=4y+1,27y=3x-1,则x-y=3.解析:∵2x=4y+1∴2x=2(2y+2)∴x=2y+2①又∵27y=3x-1∴33y=3x-1∴3y=x-1②解①②组成的方程组得例5计算:(1)82×42011×(-0.25)2015;解:82×42011×(-0.25)2015=43×42011×(-0.25)2015=42014×(-0.25)2014×(-0.25)=-0.25×(-4×0.25)2014=-1/4(2)20152-2014×2016.解:20152-2014×2016=20152-(2015-1)(2015+1)=20152-(20152-12)=20152-20152+1=1例6若(x+y)2=36,(x-y)2=16,求xy和x2+y2的值.解:∵(x+y)2=36,(x-y)2=16,∴x2+2xy+y2=36,①x2-2xy+y2=16,②①-②得4xy=20,∴xy=5,①+②得2(x2+y2)=52,∴x2+y2=26.[教学说明]对幂的运算,乘法公式的应用.四、复习训练,巩固提高1.已知:a+b=m,ab=-4,化简:(a-2)(b-2)的结果是()A.6B.2m-8C.2mD.-2m162 解析:∵a+b=m,ab=-4,∴(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m故选D.2.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元解析:5月份营业额为3b×=bc=,4月份营业额为bc=a,∴125a-a=1.4a.故选A.3.已知(x+a)(x+b)=x2-13x+36,则a+b的值是()A.13B.-13C.36D.-36解析:(x+a)(x+b)=x2+(a+b)x+ab,又∵(x+a)(x+b)=x2-13x+36,所以a+b=-13.故选B.4.若(a+2)2+|b+1|=0,则5ab2-{2a2b-[3ab2-(4ab2-2a2b)]}=______.解析:由(a+2)2+|b+1|=0得a=-2,b=-1,当a=-2,b=-1时,5ab2-{2a2b-[3ab2-(4ab2-2a2b)]}=4ab2=-8.5.计算:.解:根据幂的乘方与积的乘方法则可知,8.先化简:(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x求值.解:(2x-1)2-(3x+1)(3x-1)+5x(x-1)=4x2-4x+1-(9x2-1)+5x2-5x=4x2-4x+1-9x2+1+5x2-5x162 =-9x+29.已知a-b=4,ab+m2-6m+13=0,求证(a+m)b的值为.证明:ab+m2-6m+13=0可化为ab+m2-6m+9+4=0,即ab+(m-3)2+4=0①;将a-b=4转化为b=a-4②;②代入①得:a(a-4)+(m-3)2+4=0,即(a-2)2+(m-3)2=0;解得a=2;m=3.∴b=a-4=2-4=-2;因此(a+m)b=(2+3)-2=.[教学说明]因为内容特点,运算规律与方法是学生应掌握的重点,所以本课复习以练习为主,通过大量题型训练,使学生理解掌握各类运算技巧,并力求熟练.五、师生互动,课堂小结通过本节课的学习,你在知识上有哪些收获?哪些能力得到了提高?【课后作业】1.布置作业:教材“复习题”中第2、3、5、8、9题.2.完成同步练习册中本课时的练习.【教学后记】第二章相交线与平行线1两条直线的位置关系第1课时对顶角、余角和补角【教学目标】1.在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题.2.经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力.3.激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【教学重点】1.余角、补角、对顶角的概念.2.理解等角的余角相等、等角的补角相等、对顶角相等.【教学难点】对“在同一平面内的两条直线”含义的理解.理解等角的余角相等,等角的补角相等.【教学过程】一、情景导入,初步认知向同学们展示一些生活中的图片,让学生观察生活中的两条直线之间的位置关系.162 [教学说明]数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备.通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学.二、思考探究,获取新知探究1:相交线、平行线1.从上面的图片中,你能找出两条直线有几种位置关系吗?2.请各组同学每人拿出两支笔,用它们代表两条直线,在同一平面内,随意移动笔,观察笔与笔有几种位置关系?各种位置关系,分别叫做什么?.[归纳结论]同一平面内的两条直线的位置关系有平行和相交两种;若两条直线只有一个公共点,我们称这两条直线为相交线;同一平面内不相交的两条直线叫做平行线.[教学说明]让学生用两支笔动手操作,不但培养了学生的动手能力,还能让学生更深层次的体会到平行线的含义,进一步明确同一平面内两条直线的位置关系.探究2:对顶角的概念和性质请先画一画:两条直线直线AB和CD,交于点O,再回答下列问题1.观察:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义.2.剪刀可以看成两直线相交,那么剪刀在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论?[归纳结论]两个角的两边互为反向延长线,则这两个角叫做对顶角.对顶角相等.探究3:余角、补角的概念和性质162 1.用量角器,量出∠1、∠2、∠3、∠4的度数,观察∠1与∠3有什么关系?2.图中还有哪些角,具有这种关系?[归纳结论]如果两个角的和是180°,那么称这两个角互为补角.类似的,如果两个角的和是90°,那么称这两个角互为余角.3.打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图抽象成几何图形,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2.小组合作交流,解决下列问题:问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?问题3:∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?[归纳结论]同角或等角的余角相等.同角或等角的补角相等.[教学说明]概括归纳得到猜想和规律,并加以验证,是创新的重要方法.结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验.三、运用新知,深化理解1.在下列4个判断中:①在同一平面内,不相交的两条线段一定平行;②不相交的两条直线一定平行;③在同一平面内,不平行的两条射线一定相交;④在同一平面内,不平行的两条直线一定相交.其中正确的个数是(D)A.4B.3C.2D.12.如果一个角的补角是150°,那么这个角的余角的度数是60°3.已知∠α=24°,且∠α与∠β互余,∠β与∠γ互余,则∠γ的余角和补角的度数分别为66°,156°.4.判断.(1)一个角有余角也一定有补角.()(2)一个角有补角也一定有余角.()(3)一个角的补角一定大于这个角.()答案:(1)√(2)×(3)×5.填表:162 从中,你发现一个锐角的补角比它的余角大.答案:表格第一行:58°,148°;第二行:27°37′,117°37′;第三行:90°-x,180°-x;空格:90°.6.已知一个角的补角是它的余角的4倍,求这个角的度数.分析:可以利用方程思想解决这道题.解:设这个角为x°,则180-x=4(90-x),∴x=60.答:这个角是60°.7.如图,E、F是直线DG上两点,∠1=∠2,∠3=∠4=90°,找出图中相等的角并说明理由.解:∠5=∠6,理由是:等角的余角相等.8.如图,已知AOB是一直线,OC是∠AOB的平分线,∠DOE是直角,图中哪些角互余?哪些角互补?哪些角相等?解:互余:∠1与∠2,∠1与∠4,∠2与∠3,∠4与∠3;互补:∠1与∠EOB,∠3与∠EOB,∠4与∠AOD,∠2与∠AOD,∠AOC与∠BOC,∠AOC与∠DOE,∠BOC与∠DOE.相等:∠AOC=∠BOC=∠DOE,∠1=∠3,∠2=∠4.[教学说明]巩固本节课的知识点,检验学生的掌握程度.四、师生互动,课堂小结1.你学到了哪些知识点?2.你学到了哪些方法?3.你还有哪些困惑?五、教学板书【课后作业】1.布置作业:教材“习题2.1”中第1、2、3题.2.完成同步练习册中本课时的练习.162 【教学后记】第2课时垂直【教学目标】1.会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线.2.通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用.3.初步尝试进行简单的推理.4.通过从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力.5.激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性.【教学重点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.【教学难点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.【教学过程】一、情景导入,初步认知观察下面三个图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?[教学说明]数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中存在大量特殊的相交线——垂直,在比较中发现新知,加深了学生对垂直和平行的感性认识,感受垂直“无处不在”.二、思考探究,获取新知1.在上面的三幅图形中,我们找出了一些相交的两条直线,那么它们有什么特殊的位置关系?这种位置关系我们称为什么呢?[归纳结论]两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线.它们的交点叫做垂足.通常用“⊥”表示两直线垂直.162 如图1,记作:AB⊥CD;如图2,记作:l⊥m.2.思考:你能画出两条互相垂直的直线吗?你有哪些方法?(1)你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?(2)如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?说出你的画法和理由.(3)你能用折纸的方法折出互相垂直的直线吗?试试看吧!请说明理由.3.动手画一画:(1)请画出直线m与点A,你有几种画法?(2)过点A画m的垂线,你能画几条?请用自己的语言概括你的发现.[归纳结论]平面内,过一点有且只有一条直线与已知直线垂直.4.动手画一画.请画出直线l与l外一点P,O是垂足,在l上取点A、B、C,比较PO、PA、PB、PC的长短,你发现了什么?[归纳结论]直线外一点与直线上各点连接的所有线段中垂线段最短.线段PO的长度,叫做点P到l的距离.162 [教学说明]通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略.三、运用新知,深化理解1.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是(C)①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个2.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是(C)A.垂线最短B.过一点确定一条直线与已知直线垂直C.垂线段最短D.以上说法都不对3.已知线段AB=10cm,在同一平面内,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有(C)A.1条B.2条C.3条D.4条4.如图,直线a⊥b,∠1=50°,则∠2=40度.解析:∵a⊥b,∴∠1与∠2互余,∵∠1=50°,∴∠2=90°-∠1=90°-50°=40°5.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.162 解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°-90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°-30°=60°6.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.[教学说明]可以满足不同层次学生学习的需要,能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题2.2”中第2、3题.2.完成同步练习册中本课时的练习.【教学后记】2探索直线平行的条件第1课时利用同位角判定两条直线平行【教学目标】1.会识别由“三线八角”所成的同位角.2.掌握直线平行的条件,并能解决一些问题.3.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.4.进一步发展空间观念,推理能力和有条理表达的能力.【教学重点】会识别各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”.【教学难点】判断两直线平行的说理过程.【教学过程】一、情景导入,初步认知1.在同一平面内,两条直线的位置关系是.2.在同一平面内,的两条直线是平行线.3.如教材中P44彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?你能说明其中的道理吗?[教学说明]教师通过设置问题,层层设疑,在引导学生思考、层层释疑的基础上,既复习旧知识,又做好新知识学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课.二、思考探究,获取新知1.动手操作移动活动木条,完成书中P44的做一做内容.2.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流.162 3.如图,直线AB,CD被直线l所截:具有∠1与∠2,这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,相对位置是相同的角,我们把这样的角称为同位角.4.图中还有其他的同位角吗?这些角相等也可以得出两直线平行吗?[归纳结论]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称“同位角相等,两直线平行”.两直线平行,用符号“∥”表示.如直线a与b平行,记作“a∥b”.5.想一想,如何利用三角板画平行线?小明是这样作的,你认为他作得对不对?你能说明其中的原理吗?6.动手画一画:①你能过直线AB外一点P画直线AB的平行线吗?能画几条?②在下图中,分别过C,D画直线AB的平行线EF、GH.那么EF与GH有怎样的位置关系?[教学说明]由浅入深,充分地让学生经历了解决问题的过程,较好的突出了重点,突破了难点.[归纳结论]过直线外一点有且只有一条直线与这条直线平行.平行于同一条直线的两条直线互相平行.162 几何语言:∵a∥b,a∥c,∴b∥c(平行于同一条直线的两条直线互相平行).三、运用新知,深化理解1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.2.如图所示,FE⊥CD,∠2=26°,当∠1=64°时,AB∥CD.3.如图,当∠1=∠D时,可以得到AD∥BC,其理由是同位角相等,两直线平行.4.如图,已知∠1=∠2,试说明AB与CD的关系.解:AB∥CD.理由:∵∠1=∠2(已知)∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴AB∥CD(同位角相等,两直线平行)5.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?162 解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠4,∴AB∥EF,∴AB∥CD∥EF.6.如图,∠B=∠C,B、A、D三点在同一直线上,∠DAC=∠B+∠C,AE是∠DAC的平分线,则AE与BC平行吗?为什么?解:AE∥BC.理由:∵∠DAC=∠B+∠C,∠B=∠C,∴∠DAC=2∠B.∵AE是∠DAC的平分线,∴∠DAC=2∠1,∴∠B=∠1,∴AE∥BC.7.如图,BE平分∠FBD,∠ABC=∠C,那么直线FB与AC平行吗?试说明理由.解:FB∥AC.理由如下:∵BE平分∠FBD,∴∠DBE=∠FBE,∵∠DBE=∠ABC,∴∠FBE=∠ABC,162 ∵∠ABC=∠C,∴∠FBE=∠C,∴FB∥AC.[教学说明]进一步激发学生的探究兴趣,学生学会用所学知识解释和解决实际生活中的问题,提高能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题2.3”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时利用内错角、同旁内角判定两条直线平行【教学目标】1.会识别由“三线八角”构成的内错角和同旁内角.2.经历探索直线平行条件的过程,掌握利用同位角相等、同旁内角互补判别直线平行的结论,并能解决一些问题.3.经历观察、操作、想象、图例、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力.4.使学生在参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系.【教学重点】弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.【教学难点】会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.【教学过程】一、情景导入,初步认知小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?162 [教学说明]通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.如图,直线AB,CD被直线l所截如上图,∠4和∠5在截线的两侧,在被截线的内部,具有这样位置关系的角叫做内错角.∠4和∠7在截线的同旁,在被截线的内部,具有这种位置关系的角叫做同旁内角.2.请找出其他的内错角和同旁内角.3.议一议:(1)内错角满足什么关系时,两直线平行?为什么?(2)同旁内角满足什么关系时,两直线平行?为什么?[归纳结论]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称“内错角相等,两直线平行”.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称“同旁内角互补,两直线平行”.[教学说明]本环节选取了课本的议一议,采取的方式是先独立思考、探究,再讨论交流,目的是充分发挥每一个学生的积极性,尽可能的找到多种方法,这样合作交流才有更充分的内容,才能够互相启发,博采众长.在学生交流的基础上,教师再利用课件展示,进一步验证结论,从而引导学生得出结论.三、运用新知,深化理解1.如图所示,∠1与∠2是内错角的是(D)2.如图所示,与∠C互为同旁内角的角有(C)162 A.1个B.2个C.3个D.4个3.如图所示,下列条件中不能判定DE∥BC的是(C)A.∠1=∠CB.∠2=∠3C.∠1=∠2D.∠2+∠4=180°4.如图所示,∠DCB和∠ABC是直线和被直线所截而成的角.答案:AB;CD;BC;同旁内.5.如图所示,∠1=∠2,则∥,理由是.答案:AB;CD;内错角相等,两直线平行.6.如图所示,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,那么EB∥CF吗?为什么?解:EB∥CF.理由如下:∵AB⊥BC于点B,BC⊥CD于点C,∴∠ABC=∠BCD=90°,∴∠1+∠3=∠2+∠4=90°,∵∠1=∠2,∴∠3=∠4,∴EB∥CF(内错角相等,两直线平行).7.如图所示,AB与CD相交于点O,∠A+∠1=110°,∠B+∠2=110°,判断AC与DB的位置关系,并说明理由.162 解:AC∥DB.理由如下:∵AB与CD相交于点O,∴∠1=∠2,∵∠A+∠1=110°,∠B+∠2=110°∴∠A=∠B,∴AC∥DB.(内错角相等,两直线平行).8.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB,CD的位置关系如何?并说明理由.解:AB∥CD.理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠ABD=2∠1,∠BDC=2∠2,又∵∠1+∠2=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).[教学说明]通过练习及时巩固所学知识,并学会灵活应用.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题2.4”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】162 3平行线的性质第1课时平行线的性质【教学目标】1.经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.3.在自己独立思考的基础上,积极参与小组活动.在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益.【教学重点】理解平行线的性质.【教学难点】学会利用平行线的性质解决实际问题.【教学过程】一、情景导入,初步认知窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?[教学说明]通过引入生活中的平行线,激发学生的求知欲.二、思考探究,获取新知1.现在我们反过来思考这个问题,如果先知道两条直线平行,对应的同位角、内错角、同旁内角会产生怎样的关系呢?2.已知直线a∥b,测量角的度数,把结果填入表内,并分析各角之间的关系.(1)图中有几对同位角?它们的大小有什么关系?为什么?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换一组平行线试一试,你能得到同样的结论吗?[教学说明]通过测量、猜想、验证,让学生在动手探索的过程中感知平行线的性质.[归纳结论]两条平行线被第三条直线所截,同位角相等.简称“两直线平行,同位角相等”.两条平行线被第三条直线所截,内错角相等.简称“两直线平行,内错角相等”.162 两条平行线被第三条直线所截,同旁内角互补.简称“两直线平行,同旁内角互补”.三、运用新知,深化理解1.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为(A)A.55°B.65°C.75°D.125°2.如图,直线c与直线a、b相交,且a//b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠3=∠2中正确的个数为(D)A.0B.1C.2D.33.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD.∵∠ACB=50°,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°.∵DE∥BC,∴∠BDE+∠B=180°.∴∠BDE=180°-∠B=110°.∴∠BDC=∠BDE-∠EDC=110°-25°=85°.[教学说明]通过练习及时巩固平行线的三条性质.四、师生互动,课堂小结通过刚才的应用,大家能谈一谈今天学习的平行线有哪些性质?五、教学板书【课后作业】1.布置作业:教材“习题2.5”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】162 第2课时平行线的判定与性质的综合应用【教学目标】1.经历掌握平行线性质与判定的过程,能用它们进行简单的推理和计算.2.经历观察、测量、推理、交流等活动,进一步提高推理能力.3.通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既是普遍联系又是相互区别的辩证唯物主义思想.【教学重点】平行线的三条性质及简单应用.【教学难点】平行线的性质与平行线判定方法的区别.【教学过程】一、情景导入,初步认知在前几节课我们探究了如何去判别两条直线是平行的,即平行线的判定.下面我想请同学来回答一下有哪些方法可以判定两条直线平行?二、思考探究,获取新知请用学过的同位角、内错角、同旁内角的概念及两直线平行的条件填空:(1)因为∠1=∠5(已知);所以a∥b().(2)因为∠4=∠(已知);所以a∥b(内错角相等,两直线平行).(3)因为∠4+∠=180°(已知);所以a∥b().[教学说明]判定平行线的条件和平行线的性质是互逆的,对初学者来说易将它们混淆.因此,复习判定直线平行的条件能为后面学习性质做好准备.三、运用新知,深化理解1.见教材52例1、例2、例3,2.如果两条直线被第三条直线所截,那么一组内错角的平分线(D)A.互相垂直B.互相平行C.互相重合D.以上均不正确3.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论(1)AB∥CD;(2)AD∥BC;(3)∠B=∠D;(4)∠D=∠ACB中正确的有(C)A.1个B.2个C.3个D.4个4.如图,如果∠1=∠2,那么∠2+∠3=180°吗?为什么?162 解:∵∠1=∠2,∴L1∥L2.∴∠2+∠3=180°.5.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.解:∵AB∥CD,∴∠B=∠1.∵BF∥CE,∴∠C=∠2.∵∠1+∠2=180°,∴∠B+∠C=180°.即∠B与∠C互补.6.如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC之间的关系,并说明理由.解:∠BEF=∠EFC.理由如下:分别延长BE.DC相交于点G.∵AB∥CD,∴∠1=∠G(两直线平行,内错角相等).∵∠1=∠2,∴∠2=∠G,∴BE∥FC.∴∠BEF=∠EFC(两直线平行,内错角相等).[教学说明]通过练习及时巩固所学知识,进一步激发学生的探究兴趣,灵活运用所学知识解决一些数学问题.四、师生互动,课堂小结通过刚才的应用,大家能谈一谈今天学习的平行线的性质和上一节判定直线平行的条件有什么不同么?五、教学板书【课后作业】1.布置作业:教材“习题2.6”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】162 4用尺规作角【教学目标】1.能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用.2.能够通过尺规设计并绘制简单的图案.3.培养动手能力和逻辑分析能力.【教学重点】能按作图语言来完成作图动作,能用尺规作一个角等于已知角.【教学难点】作图步骤和作图语言的叙述,及作角的综合应用.【教学过程】一、情景导入,初步认知如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.1.请过C点画出与AB平行的另一边.2.如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?[教学说明]教科书创设了“作一个角等于已知角”的情境,将平行线的识别与作角的问题比较自然地联系在了一起.其中,要在长方形木板上截一个平行四边形,按图中的方式(平行四边形的一组对边在长方形木板的边缘上),只要保证过点C作出与AB平行的另一条线段即可.而要过点C作AB的平行线,可以通过作一个角等于∠BAC得到.二、思考探究,获取新知探究:用尺规作一个角等于已知角.已知∠AOB,求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;162 (3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′;(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′;(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.[教学说明]使学生学会使用尺规作一个角等于已知角,并独立完成问题情境中的问题.三、运用新知,深化理解1.如图,已知:∠AOB.利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.解:作法:(1)在OA上任取一点C,以O为圆心,以OC的长为半径画弧,交OB于A′;(2)以C为圆心,CA′的长为半径画弧,两弧交于B′;(3)作射线OB′.162 则∠A′OB′=2∠AOB.如图所示:2.已知:∠1,∠2.求作:∠AOB,使得∠AOB=∠1+∠2.解:作法:(1)作∠BOC,使∠BOC=∠1;(2)在∠BOC的另一侧作∠AOC;(3)则∠AOB=∠1+∠2.作图(略).3.已知:∠1,∠2.求作:∠AOB,使得∠AOB=∠1-∠2.解:作法:(1)作∠BOC,使∠BOC=∠1;(2)在∠BOC的内部作∠AOC,使∠AOC=∠2;(3)则∠AOB=∠1-∠2.作图(略).[教学说明]虽然在教材中没有出现有关角的和、差、倍,但是在课后习题及随堂练习当中出现了有关作角的和的问题和作角的差的问题,所以学生在此掌握作角的和、差、倍也是十分有必要的.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题2.7”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.在复习本章知识的基础上,理清知识脉络,建立起完善的知识结构.2.经历利用相交线、平行线的有关事实解释实际问题的过程.从中体会分析问题,解决问题的一些思想(分类、转换、建模)和方法(分析、综合),发展空间观念和推理能力.3.在观察、想象、推理、交流的数学活动中,初步养成言之有据的习惯,初步形成积极参与数学活动、与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】垂线的概念与平行线的判定和性质.【教学难点】学会“说理”和“简单推理”.【教学过程】162 一、知识结构[教学说明]揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.知识定义(1)对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角.(2)补角:如果两个角的和是180°,那么称这两个角互为补角.(3)如果两个角的和是90°,那么称这两个角互为余角.(4)垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线.(5)平行线:在同一平面内,不相交的两条直线叫做平行线.同位角、内错角、同旁内角:(6)同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角.(7)内错角:∠4与∠6像这样的一对角叫做内错角.(8)同旁内角:∠4与∠5像这样的一对角叫做同旁内角.2.定理与性质(1)对顶角的性质:对顶角相等.(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直.性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.(3)平行公理:经过直线外一点有且只有一条直线与已知直线平行.(4)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(5)平行线的性质:性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.(6)平行线的判定:判定1:同位角相等,两直线平行.判定2:内错角相等,两直线平行.判定3:同旁内角互补,两直线平行.162 [教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知例1下列说法错误的是(B)A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补则两直线平行例2同一平面内,下列说法:①过两点有且只有一条直线;②两直线不平行,则一定相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且仅有一条直线与已知直线平行,其中正确的个数是(D)A.1个B.2个C.3个D.4个例3如图,下列条件能证明AD∥BC的是(D)A.∠A=∠CB.∠B=∠DC.∠B=∠CD.∠A+∠B=180°例4如图,(1)∵∠ABD=∠BDC(已知),∴∥();(2)∵∠DBC=∠ADB(已知),∴∥();(3)∵∠CBE=∠DCB(已知),∴∥();(4)∵∠CBE=∠A,(已知),∴∥();(5)∵∠A+∠ADC=180°(已知),∴∥();(6)∵∠A+∠ABC=180°(已知),∥().解:(1)CD∥AB,内错角相等,两直线平行;(2)AD∥BC,内错角相等,两直线平行;(3)CD∥BE,内错角相等,两直线平行;(4)AD∥BC,同位角相等,两直线平行;(5)AB∥CD,同旁内角互补,两直线平行;(6)AD∥BC,同旁内角互补,两直线平行.例5如图,∠1=∠2,AC平分∠DAB,DC∥AB吗?为什么?解:DC∥AB.理由:∵由AC平分∠DAB,故∠1=∠CAB,又∠1=∠2,所以∠2=∠CAB.因而AB∥CD(内错角相等,两直线平行).例6如图,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠1=∠2,DE∥FB吗?为什么?162 解:DE∥FB.理由:∵∠ADC=∠ABC,且∠2=∠ADE,∠CBF=∠ABF,故∠2=∠ABF.又∠2=∠1,因此∠1=∠ABF,∴DE∥BF(同位角相等,两直线平行).例7如图,AB∥CD,∠BAE=30°,∠ECD=60°,那么∠AEC度数为多少?解:如图,过E作EF∥AB,则∠1=∠A=30°;因为AB∥CD,所以EF∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),所以∠2=∠C=60°,那么∠AEC=∠1+∠2=30°+60°=90°.[教学说明]通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点A到BC的距离是,点B到AC的距离是,A、B两点的距离是,点C到AB的距离是.答案:6cm8cm10cm4.8cm2.设a、b、c为平面上三条不同直线,若a//b,b//c,则a与c的位置关系是;若a⊥b,b⊥c,则a与c的位置关系是;若a//b,b⊥c,则a与c的位置关系是.解:平行平行垂直3.下列图形中,由AB∥CD,能得到∠1=∠2的是(B)162 4.如图,直线L1∥L2,则∠α为(D)A.150°B.140°C.130°D.120°5.(1)如图,已知∠1=∠2,试判断a、b的位置关系.(2)直线a//b,∠1=∠2吗?为什么?解:(1)a∥b.理由:∵∠1=∠2,又∵∠2=∠3(对顶角相等),∴∠1=∠3,∴a∥b(同位角相等两直线平行).(2)∠1=∠2.理由:∵a∥b,∴∠1=∠3(两直线平行,同位角相等).又∵∠2=∠3(对顶角相等).∴∠1=∠2.6.如图,已知△ABC,AD⊥BC于D,E为AB上一点,EF⊥BC于F,DG//BA交CA于G.∠1与∠2相等吗?为什么?162 解:∠1=∠2.理由:∵AD⊥BC,FE⊥BC,∴∠EFB=∠ADB=90°,∴EF//AD,∴∠2=∠3,∵DG//BA,∴∠3=∠1,∴∠1=∠2.7.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.解:∠A=∠F.理由如下:∵∠1=∠DGF(对顶角相等),又∠1=∠2,∴∠DGF=∠2,∴DB∥EC(同位角相等,两直线平行),∴∠DBA=∠C(两直线平行,同位角相等).又∵∠C=∠D,∴∠DBA=∠D,∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).8.如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.解:∠ABC与∠DEF的数量关系是相等或互补.理由:如图①,因为DE∥AB,所以∠ABC=∠DPC,又因为EF∥BC,所以∠DEF=∠DPC.于是有∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°,又因为EF∥BC,所以∠DEF=∠DPB.于是有∠ABC+∠DEF=180°.9.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,则图③中∠CFE度数是多少?162 (2)若∠DEF=α,把图③中∠CFE用α表示.解:(1)因为长方形的对边是平行的,所以∠BFE=∠DEF=20°;图①中的∠CFE=180°-∠BFE,以下每折叠一次,减少一个∠BFE,所以图③中∠CFE度数是120°.(2)由(1)中的规律,可得∠CFE=180°-3α.[教学说明]进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?【课后作业】1.布置作业:教材“复习题”中第2、3、5、7、8、12题.2.完成同步练习册中本课时的练习.【教学后记】第三章概率初步1感受可能性【教学目标】1.通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的.2.使学生在教师的指导下自主地发现问题、探究问题、获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力.3.通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】事件发生的确定性与不确定性.【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念.【教学过程】一、情景导入,初步认知(结合动画欣赏)播放一段天气预报,“天有不测风云”,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.课题:随机事件[教学说明]具体情境的引入,提高了学生学生的兴趣和动力.162 二、思考探究,获取新知生活中有哪些事情一定会发生,哪些事情一定不会发生,哪些事情可能会发生?思考:①随机投掷一枚均匀的骰子,掷出的点数会是10吗?②随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?③随机投掷一枚均匀的骰子,掷出的点数一定是1吗?让学生们思考,并请学生回答.探究1:教师提问——“下列事件一定发生吗?”1.玻璃杯从10米高处落到水泥地面上会破碎;2.太阳从东方升起;3.今天星期三,明天星期四;4.瓮中捉鳖.[归纳结论]像这样,在一定条件下一定能发生的事件,叫做必然事件.探究2:教师提问——“下列事件一定能发生吗?”1.太阳从西方升起;2.一个数的绝对值小于0;3.水中捞月.[归纳结论]像这样,在一定条件下不可能发生的事件,叫做不可能事件.必然事件和不可能事件统称为确定事件.探究3:教师提问——“下列事件一定能发生吗?”1.从商店买瓶绿茶饮料中奖了.2.掷一枚硬币,有国徽的一面朝上.3.张彩票恰好中奖.4.办公室老师从我们班选一个人去打水,你被选中.5.守株待兔.[归纳结论]像这样,我们事先无法确定它会不会发生,这样的事件称为不确定事件,也称为随机事件.[教学说明]使学生在有趣的问题中体会不确定事件(随机事件),提高学生学习数学的兴趣,积累丰富的数学活动经验,让学生感受到数学和实际生活的联系.探究4:游戏——掷骰子游戏利用质地均匀的骰子和同桌做游戏,规则如下:(1)两人同时游戏,各自掷一枚骰子,每人可以只掷一次骰子,也可以连续地掷几次骰子.(2)当掷出的点数和不超过10时,如决定停止掷,那么你的得分就是所掷出的点数和;当掷出的点数和超过10时,必须停止掷,并且你的得分为0.(3)比较两人的得分,谁的得分多谁就获胜.多做几次上面的游戏,并将最终结果填入课本P137上表中.在做游戏的过程中,你是如何决定是继续掷骰子还是停止掷骰子的?议一议:在做游戏时,如果前面掷出的点数和已经是5,你是决定继续掷还是决定停止掷?如果掷出的点数和已经是9呢?探究5:不透明的桶子中有3个红球,1个白球,所有的球除颜色外,其它完全相同.从中任意摸一个球,你认为摸到哪种颜色的球的可能性较大,说说你的理由.[归纳结论]一般地,不确定事件发生的可能性是有大小的.[教学说明]162 通过游戏使学生体会生活中许多不确定事件发生的可能性是有大小的.同时以游戏引入知识,学生接受起来会更自然,印象会更深刻.三、运用新知,深化理解1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是(B).A.必然事件B.随机事件C.不可能事件D.无法确定.2.一个袋中有5个红球,2个白球,从中任意摸出3个,下列事件中是不可能事件的是(C).A.3个都是红球B.至少1个是红球C.3个都是白球D.至多1个是白球3.下列事件是必然事件的是(C)A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为10000公斤C.在只装有5个红球的袋中摸出1球是红球D.农历十五的晚上一定能看到圆月4.下列事件中,随机事件是(C)A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃105.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是(D)A.点数之和为12B.点数之和小于3C.点数之和大于4且小于8D.点数之和为136.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌7.不透明的袋子中装有4个红球,3个黑球,5个蓝球,每个球除颜色不同外,其它都一样,从中任意摸出一球,则摸出球的可能性最大.答案:蓝8.在200件产品中,有192件一级品,8件二级品,则下列事件:(如果没有请填“无”)①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品,其中是必然事件;是不可能事件;是随机事件.答案:④,②,①③[教学说明]通过亲身体验,把问题渗透到游戏中,找到求随机事件中可能性大小的方法,培养学生发现问题、解决问题的能力.四、师生互动,课堂小结1.理解确定事件与不确定事件;2.知道不确定事件发生的可能性有大有小;3.合理运用所学知识分析解决相关问题.五、教学板书162 【课后作业】1.布置作业:教材“习题6.1”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】2频率的稳定性【教学目标】1.通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.3.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.4.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生应用数学的能力.【教学重点】通过对事件发生的频率的分析来估计事件发生的概率.【教学难点】通过对事件发生的频率的分析来估计事件发生的概率.【教学过程】一、情景导入,初步认知抛掷一枚图钉,落地后会有几种情况?这几种情况的可能性一样大吗?[教学说明]培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同.二、思考探究,获取新知探究1:图钉试验1.两人一组做20次掷图钉游戏,并将数据记录在下表中:介绍频率定义:在n次重复试验中,不确定事件A发生了m次,则比值称为事件发生的频率.162 2.累计全班同学的试验结果,并将试验数据汇总填入下表:3.请同学们根据已填的表格,完成下面的折线统计图小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图象,钉尖朝上的频率的变化有什么规律?[归纳结论]在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.[教学说明]通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论课本P141议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.探究2:硬币试验1.同桌两人做20次掷硬币的游戏,并将数据填在下表中:162 2.各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成下表:3.根据上表,完成课本P143折线统计图.观察上面的折线统计图,你发现了什么规律?4.观察P144表上的数学家所作的掷硬币试验的数据.表中的数据支持你发现的规律吗?[归纳结论](1)在试验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为:频率的稳定性.(2)我们把这个刻画事件A发生的可能性大小的数值,称为事件A的概率,记为P(A).(3)一般地,大量重复的试验中,我们常用不确定事件A发生的频率来估计事件A发生的概率.5.想一想:事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?[归纳结论]必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数.[教学说明]一是通过实验让学生体验等可能性事件发生的可能性的发现过程,当试验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是实验的次数不够,培养学生发现问题、解决问题的能力.从而使学生自发的把全班试验的结果都统计出来,学会进行实验和收集实验数据;二是培养学生的合作精神,通过实验和收集实验数据的过程增进学生之间的感情,并明白团队精神的重要性.三、运用新知,深化理解1.一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为(A)162 A.0.2B.80%C.D.12.从标有1、2、3、4、5的5个小球中任取2个,它们的和是偶数的概率是(C)A.B.C.D.以上均不对3.一名运动员连续射靶10次,其中2次命中10环,2次命中9环,6次命中8环,针对某次射击,下列说法正确的是(C)A.射中10环的可能性最大B.命中9环的可能性最大C.命中8环的可能性最大D.以上可能性均等4.袋中有红球12个,白球k个,这些球除颜色外完全相同.小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则估计口袋中白球有个.解:∵小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则=0.25,k=4,∴口袋中白球很可能有4个.5.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小组做了棋子下掷试验,试验数据如下表:(1)请将数据补充完整;(2)画出“兵”字面朝上的频率折线统计图;(3)如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?解:(1)所填数字为40×0.45=18,66÷120=0.55;(2)折线图:162 (3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.[教学说明]使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性.四、师生互动,课堂小结1.通过本节课的学习,你了解了哪些知识?2.在本节课的教学活动中,你获得了哪些活动体验?五、教学板书【课后作业】1.布置作业:教材“习题6.3”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】3等可能事件的概率第1课时计算简单事件发生的概率【教学目标】1.通过摸球游戏,帮助学生了解计算一类事件发生的可能性的方法,体会概率的意义.2.通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力.3.通过环环相扣、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣.【教学重点】概率的意义及其计算方法的理解与应用【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.【教学过程】一、情景导入,初步认知任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能相同吗?正面朝上的概率是多少?162 [教学说明]本节课的内容是要学会简单的概率计算的方法,所以在学习新课以前复习有关简单掷硬币正面朝上的概率,为后面的学习打好基础.二、思考探究,获取新知探究:一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?1.这里我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点?设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果出现.如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.想一想:你能找一些结果是等可能的实验吗?[归纳结论]一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:P(A)=[教学说明]通过小组合作交流讨论,学生能够准确理解何为等可能试验,并且大家共同合作得出求等可能试验中事件A的概率公式.在本环节中有利于培养学生与他人的合作、互助意识,锻炼学生与他人的沟通、协作能力.三、运用新知,深化理解1.见教材P147例12.一道单项选择题有A、B、C、D四个备选答案,当你不会做的时候,从中随机地选一个答案,你答对的概率是.答案:.3.一副扑克牌,任意抽取其中的一张,①P(抽到大王)=.②P(抽到3)=.③P(抽到方块)=.答案:①,②,③.4.一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同.从中任意摸出一球,则:P(摸到红球)=,P(摸到白球)=,P(摸到黄球)=.答案:,,.5.有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.答案:(1),(2),(3).6.任意掷一枚均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?162 解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等.(1)掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.所以P(掷出的点数大于4)=.(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.所以P(掷出的点数是偶数)=.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题6.4”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】第2课时游戏的公平性【教学目标】1.通过小组合作、交流、试验,理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.2.再次经历数据的收集、整理和简单分析、作出决策的合作交流过程.发展学生的随机意识;让学生在小组活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.3.在实验过程中体会数据的客观真实性,感受数学与现实生活的密切关系,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】摸球类问题的原则,会进行摸球类的游戏.【教学难点】根据题意添加条件使游戏具有公平性.【教学过程】一、情景导入,初步认知在一个装有2个红球和3个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜,这个游戏对双方公平吗?[教学说明]对于这个游戏的公平性的问题是本节课的教学重点和教学难点,让学生探究讨论游戏的公平与否,从而产生学生认识问题上的矛盾冲突,激发学习的积极性.二、思考探究,获取新知探究:设计摸球游戏162 1.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到白球的概率为,摸到红球的概率也是.2.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率为,摸到白球和黄球的概率都是.3.选取10个除颜色外完全相同的球设计一个摸球游戏,使得摸到红球的概率为,摸到白球的概率也是.4.能否用7个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率是,摸到黄球和白球的概率都是.[教学说明]逆向思维能力是思维能力的一个重要组成部分.加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识.三、运用新知,深化理解1.规定:在一副去掉大、小王的扑克牌中,牌面从小到大的顺序为:2、3、4、5、6、7、8、9、10、J、Q、K、A,且牌面的大小与花色无关.(1)小明和小颖做摸牌游戏,他们先后从这副去掉大、小王的扑克牌中任意抽取一张牌(不放回),谁摸到的牌面大,谁就获胜现小明已经摸到的牌面为4,然后小颖摸牌,P(小明获胜)=_______.P(小颖获胜)=_______.(2)若小明已经摸到的牌面为2,然后小颖摸牌,P(小明获胜)=_______.P(小颖获胜)=_______.(3)现小明已经摸到的牌面为A,然后小颖摸牌,P(小明获胜)=_______.P(小颖获胜)=_______.答案:略2.小明和小刚都想去看周末的足球赛,但却只有一张球票,小明提议用如下的办法决定到底谁去看比赛:小明找来一个转盘,转盘被等分为8份,随意的转动转盘,若转到颜色为红色,则小刚去看足球赛;转到其它颜色,小明去.你认为这个游戏公平吗?如果你是小明,你能设计一个公平的游戏吗?解:不公平因为,小刚去的概率为,而小明去的概率为.将转盘等分成2份,涂成两种颜色,这样就比较公平.[教学说明]学生应用所学新知解决典型概率问题,解决与生活实际联系紧密的问题.同时可以通过分组竞赛的方式培养学生学习数学的积极性.达到提高学生的学习效率,增强学生的自信心的目的.四、师生互动,课堂小结162 先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题6.5”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】第3课时计算与面积相关的事件的概率【教学目标】1.了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型.2.了解概率的大小与面积的关系,能设计符合要求的简单概率模型.3.在分组讨论合作探究的过程中体会事件发生的不确定性,进一步体会“数学就在我们身边”.4.初步认识概率与人类生活的密切联系,感受概率的应用价值,增强学生学数学、用数学的意识,提高学生之间的合作交流能力和学习数学的兴趣.【教学重点】会进行简单的概率计算.【教学难点】会进行简单的概率计算.【教学过程】一、情景导入,初步认知以“传球游戏”开始,诱发学生的学习兴趣,寓教于乐.要求:学生座位安排成方阵形式,开展传球活动.(教师可以对学生活动给予一定的指导,发出口令“开始”、“停”,学生进行循环传球游戏.让学生体验事件的随机性.)游戏结束后提出问题:球落在男、女生的概率分别为多大?[教学说明]以游戏的形式对求概率进行复习,并为本节课做铺垫,同时提高了学生的学习兴趣.二、思考探究,获取新知探究1:下图是卧室和书房的示意图,图中每一方块除颜色外,其它都相同.一小球在卧室和书房中自由地滚动,并随机停留在某块方砖上.162 思考下列问题:1.小球在卧室和书房中自由地滚动,并随机停留在某块方砖上,在哪个房间里,小球停留在黑砖上的概率大?(学生:在卧室里)2.你是怎样分析的?(生:黑色方砖的块数多些)3.你觉得小球停留在黑砖上的概率大小与什么有关?[教学说明]由这些问题引发学生的思考,使知识间的过渡自然、轻松、直观的初步体验几何概率.探究2:假如小球在如图所示的地板上自由地滚动,并随机停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?各小组讨论.交流后派代表说出自己的分析思路和答案,(选3~4个小组代表讲解).思考下列问题,由小组讨论得出结论并交流.互相补充完善,并派代表回答.1.题中所说“自由地滚动,并随机停留在某块方砖上”说明了什么?2.小球停留在方砖上所有可能出现的结果有几种?停留在黑砖上可能出现的结果有几种?3.小球停留在黑砖上的概率是多少?怎样计算?4.小球停留在白砖上的概率是多少?它与停留在黑砖上的概率有何关系?5.如果黑砖的面积是5平方米,整个地板的面积是20平方米,小球停留在黑砖上的概率是多少?[教学说明]通过这一系列问题,使学生充分体验随机性的必要性以及几何概率的含义,并掌握概率的计算方法.以问题串的形式引导学生逐步深入的思考.便于加深对本节课知识的理解,有助于相关知识的消化.探究3:如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和红色区域的概率分别是多少?首先让学生独立思考.书写答案,然后小组交流,最后全班展示,教师总结.注意让学生重点讨论以下三种答案:方案一:指针不是落在蓝色区域就是落在红色区域,落在蓝色区域和红色区域的概率相等,所以P(落在蓝色区域)=P(落在红色区域)=.方案二:先把红色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是蓝色,2个是红色,所以P(落在蓝色区域)=,P(落在红色区域)=.162 方案三:利用圆心角度数计算,所以P(落在蓝色区域)=,P(落在红色区域)=你认为以上三种方案是否正确?为什么?[归纳结论]转盘应被等分成若干份.各种结果出现的可能性务必相同.[教学说明]苏霍姆林斯基说过:“应该让我们的学生在每一节课上都感到热烈的、沸腾的、多姿多彩的精神生活.”课堂上,只有让学生真正“动”、“活”起来,学生的学习热情才会高涨,创造力才会加强.三、运用新知,深化理解1.见教材P152例2.2.见教材P154例3.3.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则(A)A.P1>P2B.P1<P2C.P1=P2D.以上都有可能4.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,停车场内一个停车位置正好占一个格且每个格除颜色外完全一样,则汽车停在蓝色区域(阴影表示)的概率是.5.如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是.答案:6.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.162 答案:7.下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.解:(1),(2).8.如图是一个转盘,小颖认为转盘上共有三种不同的颜色,所以自由转动这个转盘,指针停在红色.黄色或蓝色区域的概率都是,你认为呢?解:不是,指针停在红色.黄色或蓝色区域的概率分别为:.9.如图:转盘被等分成16个扇形,请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为,蓝色区域的概率为,黄色区域的概率为吗?解:红色涂4份,蓝色涂6份,黄色涂2份.还有4份涂上其它的颜色.涂色略.[教学说明]对本节知识进行巩固练习,通过本环节学生将本节课的知识融会贯通并应用到生活中去,体验到数学来源于生活又作用于生活.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题6.7”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.感受生活中的随机现象,并体会不确定事件发生的可能性大小;2.通过实验感受不确定事件发生的频率的稳定性,理解概率的意义;3.能求一些简单不确定事件发生的概率.4.体会解决问题的策略的多样性,发展实践能力和创新精神.5.养成实事求是的态度及独立思考的习惯.【教学重点】能求一些简单不确定事件发生的概率.【教学难点】求一些简单不确定事件发生的概率.【教学过程】一、知识结构概率事件必然事件[教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.事件分为必然事件、不可能事件、不确定事件.2.必然事件:事先就能肯定一定会发生的事件.也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1).162 3.不可能事件:事先就能肯定一定不会发生的事件.也就是指该事件每次都完全没有机会发生,即发生的可能性为零.4.不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间.5.等可能性:是指几种事件发生的可能性相等.6.游戏规则的公平性:就是看游戏双方的结果是否具有等可能性.(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的;(2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的;(3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可.7.概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数.8.概率的计算:直接数出所有可能出现的结果的总数n,再数出事件A可能出现的结果数m,利用概率公式P(A)=直接得出事件A的概率.9.几何图形的概率概率的大小与面积的大小有关,事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.[教学说明]学生通过梳理知识体系,不仅能提高分析问题的能力,而且能够发现自身的不足,通过查漏补缺,尽快完善知识结构.三、典例精析,复习新知例1下列说法正确的是(B).A.抛掷硬币试验中,抛掷500次和抛掷1000次结果没什么区别B.投掷质量分布均匀的六面体骰子600次,骰子六面分别标有1,2,3,4,5,6,那么出现5点的机会大约为100次C.小丽的幸运数是“8”,所以她抛出“8”的机会比她抛出其他数字的机会大D.某彩票的中奖机会是1%,买1张一定不会中奖例2书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,则是数学书的概率是(C).A.B.C.D.例3任意一个事件发生的概率P的范围是(D).A.0<P<1B.0≤P<1C.0<P≤1D.0≤P≤1例4一个袋中装有3个红球,5个黄球,10个绿球,小强从袋中任意摸出一球是黑球的概率为(A).A.0B.1C.D.例5任意抛掷一枚质量均匀的硬币两次,出现两次都为正面朝上的概率为,出现两次都为相同的面的概率为,出现至少有一面是正面的概率为.答案:例6有朋友约定明天上午8:00~12:00的任一时刻到学校与王老师会面,王老师明天上午要上三节课,每节课45分钟,朋友到学校时王老师正巧不在上课的概率是.答案:162 点拨:上午8:00~12:00共4小时,即240分钟,王老师明天上午要上课135分钟,不在上课的时间为105分钟;则朋友到学校时王老师正巧不在上课的概率是.例7如图所示,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按如图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?解:根据题意分析可得:从三个盒子中拿出两个共3种情况,其中有2种情况可使这两个圆环可以比较紧密地套在一起,故其概率是.例8小红、小丽和小华是同班学生,如果他们3人到校先后次序出现的可能性是一样的,那么小丽比小华先到校的概率是多少呢?(3人不同时到校)解:共有6种等可能的结果,其中小丽比小华先到校的有3种,所以所求概率为.[教学说明]教师根据学生遇到的问题和出现的错误,有针对性地进行讲解和指导.同时教学中应通过恰当的方式让学生理解解题的依据.四、复习训练,巩固提高1.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为(A).A.12B.9C.7D.62.用写有0,1,2的三张卡片排成三位数是偶数的概率为(A).A.B.C.D.3.蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是.答案:4.某商场在“五·一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是.答案:点拨:一次摸出两个球共有6种结果,其中两球颜色相同的有2种,所以得奖的概率是.5.有四张不透明卡片为2,227,π,,除正面的数不同外,其余都相同.将它们背面朝上,洗匀后从中随机抽取一张卡片,抽到写有无理数卡片的概率是多少?解:四张卡片,从中任抽一张,所有可能的结果有4种,抽到无理数的结果有2种,∴P(抽到无理数)=.6.如图是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角(即∠AOB)为90°;标有数字2,4及6的扇形(即扇形BOC,扇形DOE,扇形FOA)的圆心角(即∠BOC,∠DOE,∠FOA)均为60°;标有数字3,5的扇形(即扇形COD,扇形EOF)的圆心角(即∠COD,∠EOF)均为45°.利用这个转盘甲、乙两人做下列游戏:自由转动转盘,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲,乙双方公平吗?为什么?162 解:此游戏对甲、乙双方是公平的.因为奇数点度数:90°+45°+45°=180°,与偶数点所占度数相等.7.用10个球设计一个摸球游戏:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.解:(1)2个红球,8个其他颜色球;(2)4个红球,4个白球,2个其他颜色球.8.小妹家住宅面积为90平方米,其中大卧室18平方米,客厅30平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).解:(1)P(在客厅捉到小猫)=;(2)P(在小卧室捉到小猫)=;(3)P(在卫生间捉到小猫)=;(4)P(不在卧室捉到小猫)=.[教学说明]巩固本章内容,根据学生掌握情况,作适当讲解.五、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.【课后作业】1.布置作业:教材“复习题”中第2、4、5、8、12、25、18、20题.2.完成同步练习册中本课时的练习.【教学后记】第四章三角形162 1认识三角形第1课时三角形的内角和【教学目标】1.进一步认识三角形的有关概念及其基本要素,掌握三角形内角和定理和直角三角形中两锐角的关系.2.通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力.3.让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.【教学重点】三角形的相关概念;内角和定理;直角三角形两锐角关系的探究和归纳.【教学难点】三角形角之间的关系的应用.【教学过程】一、情景导入,初步认知1.如何表示线段、射线和直线?2.如何表示一个角?[教学说明]复习与回顾学生以前学习的几何图形的概念、线段及角的表示法、线段的测量等知识,为认识三角形概念、表示法、三要素、边的关系的学习奠定了基础.二、思考探究,获取新知探究1:三角形的相关概念.1.能从下图中找出4个不同的三角形吗?2.与同伴交流各自找到的三角形.3.这些三角形有什么共同的特点?[归纳结论]三角形定义:由不在同一直线上的三条线段,首尾顺次相接所组成的图形叫做三角形.4.三角形包含哪些元素呢?这些元素如何表示呢?5.我们在前面学习了角、平行等,为了书写方便,使用了角、平行的符号.那么三角形可以用什么样的符号表示呢?[归纳结论]三角形的三要素:边:(如图)三边AB、BC、AC,也可以用a、b、c来表示.顶点:(如图)三个顶点,顶点A,顶点B,顶点C.内角:(如图)三个内角,∠A,∠B,∠C.6.三角形的表示法:“三角形”用符号“△”,如图的三角形记作:△ABC(或△BCA或△CBA等).注:顶点字母与顺序无关162 [教学说明]在提问学生的基础上,得出三角形的定义,培养学生的语言表达能力;在学生操作及交流的基础上,得出三角形的三要素及三角形的表示法.探究2:三角形的内角和定理每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个或几个角的和为180°.为什么是180°.通过小组合作交流,讨论有几种拼合方法?开展小组竞赛(看哪个小组发现多?说理清楚.),各小组派代表展示拼图,并说出理由.[归纳结论]三角形三个内角的和等于180°.[教学说明]学生通过动手拼图,总结出三角形的三个内角和180°.能够加深理解.探究3:直角三角形两个锐角的关系1.一个三角形的两个内角被遮住,只露出了一个锐角,你能判断出被遮住的两个角是什么角吗?小组内相互交流,每人的结果一样吗?2.根据同学们讨论的结果可以知道,遮住的两个角可能是两个锐角.一个直角一个锐角.一个钝角一个锐角.3.根据这些角你能给三角形分类吗?[归纳结论]三角形按角可分为:锐角三角形,三个角都是锐角的三角形;直角三角形,有一个角是直角的三角形;钝角三角形,有一个角是钝角的三角形.4.通常,我们用“Rt△ABC”表示“直角三角形ABC”,把直角所对的边称为斜边,夹直角的两条边称为直角边.(如图)5.直角三角形中两个锐角有什么关系?你能证明吗?[归纳结论]直角三角形的两个锐角互余.三、运用新知,深化理解1.三角形三个内角中,锐角最多可以是(D)A.0个B.1个C.2个D.3个2.如图,图中共有个三角形,其中以AB为一边的三角形有,以∠C为一个内角的三角形有.162 答案:5个;△ABD、△ABC、△ABE;△CBE、△CBA.3.判断:(1)一个三角形的三个内角可以都小于60°;(×)(2)一个三角形最多只能有一个内角是钝角或直角;(√)4.观察三角形,并把它们的标号填入相应的括号内:锐角三角形((3)、(5))直角三角形((1)、(4)、(6))钝角三角形((2)、(7))5.在△ABC中:①∠A=35°,∠C=90°,则∠B=55°;②∠A=50°,∠B=∠C,则∠B=65°;③∠A∶∠B∶∠C=3∶2∶1,则△ABC是直角三角形;④∠A-∠C=35°,∠B-∠C=10°,则∠B=55°.6.在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.解:△ABC中,设∠A=x,则∠C=∠ABC=2x,x+2x+2x=180°(三角形内角和为180°),∴x=36°,得∠C=2x=72°,在△BCD中,∠BDC=90°,则∠DBC=90°-∠C=18°.(直角三角形两锐角互余)[教学说明]巩固提高对三角形的认识,让学生通过练习理解三角形的分类以及三角形的内角和为180°.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题4.1”中第1、2、3、4题.2.完成同步练习册中本课时的练习.【教学后记】162 第2课时三角形的三边关系【教学目标】1.掌握三角形三条边的关系,并能运用三边关系解决生活中的实际问题.2.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理表达的能力.3.学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.【教学重点】掌握三角形三条边的关系.【教学难点】三角形三条边关系的应用.【教学过程】一、情景导入,初步认知警察抓劫匪(一名罪犯实施抢劫后,经AB——BC的路线往山上逃窜.警察为了能尽快抓到逃犯,经路线AC追赶,终于在山顶将罪犯捉拿归案.)警察为什么能在这么短的时间内抓到罪犯呢?(学生各抒已见)2.引入:警察的追击路线和罪犯的逃跑路线正好围成了一个三角形,那警察能在这么短的时间内抓到罪犯,是不是与三角形的三条边有关系呢?是不是任意的三条线段都能围成一个三角形呢?今天我们就通过实际操作,分组讨论来研究三角形三条边之间的关系.[教学说明]创设情境,激发学生探究知识的欲望.二、思考探究,获取新知分别量出下面三个三角形的三边长度,并填空.计算每个三角形的任意两边之差,并与第三边比较,你能得到什么结论?[归纳结论]三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.[教学说明]通过小组的合作交流,得出“三角形任意两边之差小于第三边”的性质,同时培养学生合作学习的能力及语言表达能力.三、运用新知,深化理解1.见教材P86例题2.三条线段的长度分别为:(1)3cm、4cm、5cm;162 (2)8cm、7cm、15cm;(3)13cm、12cm、20cm;(4)5cm、5cm、11cm.能组成三角形的有(B)组.A.1B.2C.3D.43.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是(B).A.1B.2C.3D.44.已知三条线段的比是:①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.其中可构成三角形的有(B)A.1个B.2个C.3个C.4个5.已知等腰三角形的两边长分别为3和6,则它的周长为(C)A.9B.12C.15D.12或156.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是1<x<7.若x是奇数,则x的值是3、5,这样的三角形有2个;若x是偶数,则x的值是2、4、6,这样的三角形有3个.7.已知一个三角形的两边长分别是4cm、7cm,则这个三角形的周长的取值范围是什么?解:根据三角形三边的关系可知,3<第三条边<11所以三角形的周长大于:4+7+3;三角形的周长小于:4+7+11;即,三角形的周长的取值范围是大于14小于22.8.已知等腰三角形的两边长分别为4、9,求它的周长.解:因为三角形是等腰三角形,所以,当腰长为4时,三角形的三边分别为:4、4、9,而4+4<9,所以不能构成一个三角形,应舍去.当腰长为9时,三角形的三边分别为:9、9、4,4+9>9,所以能构成一个三角形.即周长为22.[教学说明]通过练习及解决课前问题,进一步提高学生知识应用的能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题4.2”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】第3课时三角形的中线与角平分线162 【教学目标】1.通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的角平分线、中线;2.会画出任意三角形的角平分线、中线,通过画图、折纸了解三角形的三条三条角平分线、三条中线会交于一点.3.通过画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题,发展应用和自主探究意识,并培养学生的动手实践能力.4.通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.【教学重点】认识三角形的中线、角平分线.【教学难点】三角形的中线、角平分线的应用.【教学过程】一、情景导入,初步认知用铅笔可以支起一张均匀的三角形卡片,你知道怎样确定这个点的位置吗?[教学说明]数学来源于生活、通过问题情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学.二、思考探究,获取新知探究1:三角形的中线如图,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC边移动到点C,观察移动过程中形成的无数条线段(AD、AE、AF、AG……)中,有没有特殊位置的线段?你认为有哪些特殊位置?[生甲]我观察到,有一条线段的端点是BC的中点.[生乙]在这些线段中,有一条线段平分∠BAC,即是∠BAC的平分线.[生丙]还有一条线段垂直边BC.[师]很好,同学们通过观察,找到了具有特殊位置的线段,这三条线段是三角形的重要线段,它们分别是三角形的中线、角平分线和高线.我们先来认识三角形的中线.1.在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.如图,点E是BC的中点,线段AE是△ABC的中线2.由定义可知:如果AE是△ABC的中线,那么有:BE=EC=BC.3.在一个三角形中,有几条中线呢?它们的位置关系又如何呢?同学们来画一画,议一议.(1)在纸上画一个锐角三角形,并画出它的所有中线,它们有怎样的位置关系?(2)钝角三角形和直角三角形的中线有几条,它们也有同样的位置关系吗?折一折,画一画,并与同伴交流.[归纳结论]一个三角形的中线共有三条,它们存在于三角形的内部,并且三条中线相交于一点.我们把这一点叫做重心.162 用铅笔支起一张均匀的三角形卡片,这个支点就是三角形的重心.探究2:三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.如图,AD是∠BAC的角平分线.由定义可知:如果AD是∠BAC的角平分线,那么有:∠BAD=∠DAC=∠BAC.2.接下来,大家拿出准备好的锐角三角形.钝角三角形和直角三角形纸片各一个,来动手做一做.(1)你能分别画出锐角三角形、钝角三角形和直角三角形这三个三角形的三条角平分线吗?(2)你能用折纸的办法得到它们吗?(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?同学们画得,折得很好,这三条角平分线都在三角形的外部,还是内部呢?[归纳结论]三角形一共有三条角平分线,都在三角形的内部,它们相交于一点.[教学说明]使学生通过画、折等实践操作活动理解三角形的中线、角平分线的概念和交点情况,并培养学生动手操作能力.通过自主探索、合作交流,发现三角形的三条角平分线交于一点的规律,体现了知识的获得不是教师传授的,而是学生自己探索得到的.三、运用新知,深化理解1.三角形的角平分线是(C)A.直线B.射线C.线段D.不确定2.如图,△ABC中,AD是角平分线,BE是中线,指出图中相等的线段和相等的角.解:相等的线段有:AE=CE;相等的角有:∠BAD=∠DAC.3.如图,∠ACE=∠BCE.BD=CD,指出图中三角形的特殊线段.解:CE是△ABC的角平分线.AD是△ABC的中线.ED是△EBC的中线.CF是△ACD的角平分线.4.如图,△ABC中,I是内角平分线AD、BE、CF的交点,问:(1)∠BIC与∠A的大小有什么关系呢?为什么?(2)∠CIA与∠B呢?∠AIB与∠C呢?说明理由.解:(1)∠BIC=90°+∠A因为BE平分∠ABC,所以由角平分线定义可得∠IBC=∠ABC.同理可以得:∠ICD=∠ACB.162 所以∠IBC+∠ICD=(∠ABC+∠ACB)又因为∠A+∠B+∠C=180°所以:∠ABC+∠ACB=180°-∠A因此可得∠IBC+∠ICD=(180°-∠A)又因为∠BIC=180°-(∠IBC+∠ICD)所以∠BIC=180°-(180°-∠A)=90°+∠A.同样的道理可得(2),即:∠CIA=90°+∠B,∠AIB=90°+∠C.[教学说明]通过解决实际问题,让学生多角度、全方位发挥其思维的深度和广度.四、师生互动,课堂小结学生自主小结,交流在本节学习中的体会、收获,交流学习过程中体验与感受,以及可能存在的困惑,师生合作共同完成课堂小结.五、教学板书【课后作业】1.布置作业:教材“习题4.3”中第1、2、3题2.完成同步练习册中本课时的练习.【教学后记】第4课时三角形的高【教学目标】1.了解三角形的高并能在三角形中作出它;知道三角形的三条高交于一点并会根据高的交点位置判断三角形的形状.2.通过观察、操作、推理、交流等活动,发现空间观念,培养学生动手动脑,发现问题及解决问题的能力,以及推理能力和有条理的表达能力.3.体验对问题的解决,增强学好数学的信心.【教学重点】认识三角形的高.【教学难点】三角形的高的应用.【教学过程】一、情景导入,初步认知过直线外一点画已知直线的垂线.162 [教学说明]让学生回忆过一点如何作一条直线的垂线,然后再引出三角形高的定义,同时为下面作三角形的高线做准备.二、思考探究,获取新知探究:三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高∴AM⊥BC1.做一做:准备一个锐角三角形纸片.(1)能画出这个三角形的高吗?能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?[归纳结论]锐角三角形的三条高在三角形的内部且交于一点.2.议一议:画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)能折出钝角三角形的三条高吗?能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?[归纳结论]1.直角三角形的三条高交于直角顶点处.2.钝角三角形的三条高所在直线交于一点,此点在三角形的外部.[教学说明]学生都能理解此定义,并立刻能作出锐角三角形的高线.因为这里有了前面的角平分线和中线的学习,学生在此环节完成得非常好,所以教学时要让学生充分地画和折,并相互交流.三、运用新知,深化理解1.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.如图所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC是(D)A.边BB′上的中线B.边BB′上的高C.∠BAB′的角平分线D.以上答案都正确[教学说明]通过学习,使学生进一步认识到直角三角形,钝角三角形中高的位置的特殊性.162 四、师生互动,课堂小结学生自主小结,交流在本节学习中的体会、收获,交流学习过程中体验与感受,以及可能存在的困惑,师生合作共同完成课堂小结.五、教学板书【课后作业】1.布置作业:教材“习题4.4”中第1、2、3题2.完成同步练习册中本课时的练习.【教学后记】2图形的全等【教学目标】1.借助具体情境和图案,通过观察、发现和实践操作重叠图形等过程,了解图形全等的意义和全等三角形的定义,了解图形全等的特征和全等三角形的性质.2.经历“我实践,我发现”,“几何常识我知道”,“实践问题我创造”的教学活动由此“感悟图形的全等——应用图形的全等——创造图形的全等”,带动知识发生、发展的全过程.3.学生积极参与图形全等的探究过程,从中体味合作与成功的快乐,建立学习好数学的自信心,体会图形全等在现实生活中的应用价值.【教学重点】全等图形的概念.【教学难点】全等三角形的性质.【教学过程】一、情景导入,初步认知请同学们观察这些图片有何特征?[教学说明]设置有趣的生活图片,一组是实物图形,一组是几何图形.让学生通过观察,对全等图形有一个感性认识.二、思考探究,获取新知这些图形中,有些是完全一样的.如果把它们叠在一起,它们就能完全重合在一起.你能找出完全一样的图形吗?162 [归纳结论]能够完全重合的两个图形称为全等图形.议一议:(1)你能说出生活中全等图形的例子吗?(2)观察下面两组图形,它们是不是全等图形?为什么?[教学说明]从反面使学生对全等的概念有了一个更清楚的理解——全等图形的形状和大小都相同.[归纳结论]全等图形的形状和大小都相同.能够完全重合的两个三角形叫做全等三角形,比如,在图中,△ABC与△DEF能够完全重合,它们是全等的.其中顶点A,D重合,它们是对应顶点;AB边与DE边重合,它们是对应边;∠A与∠D重合,它们是对应角.△ABC与△DEF全等,我们把它记作“△ABC≌△DEF”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.[归纳结论]全等三角形的对应边相等,对应角相等.讨论:(1)三角形中还有高线、中线、角平分线等特殊的线.在下图的两个全等三角形中,画出一组对应的高,一组对应的中线,一组对应的角平分线,每一组线段有什么样的大小关系?你是如何知道的?与同伴交流.(2)如图,已知△ABC≌△A′B′C′,在△A′B′C′中指出D点的对应点D′,你是如何确定这个点的?与同伴交流.(3)在△A′B′C′中找出E点的对应点E′,找出线段DE的对应线段D′E′,对应线段DE与D′E′有什么大小关系?与同伴交流.[归纳结论]全等三角形中对应线段相等.[教学说明]让学生知道三角形的对应顶点,对应边和对应角,并指出其中的对应角和对应边.三角形中还有高线、中线、角平分线等特殊的线的性质.三、运用新知,深化理解1.下列说法正确的是(C)162 ①用一张像纸冲洗出来的10张1寸像片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等图形的面积一定相等.A.1个B.2个C.3个D.4个2.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,面积也相同.其中能获得这两个图形全等的结论共有(A)A.1个B.2个C.3个D.4个3.下列图形:①两个正方形;②每边长都是1cm的两个四边形;③每边都是2cm的两个三角形;④半径都是1.5cm的两个圆.其中是一对全等图形的有(B)A.1个B.2个C.3个D.4个4.全等图形的大小和形状都相同.5.找出图中的全等图形:解:(1)和(8),(2)和(6),(3)和(9),(5)和(7),(13)和(14).6.下列图形中,哪些是全等形?用线把它们连接起来.解:略7.如图:△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.解:∠B=30°,∠ACB=85°∵△ABC≌△AEC∴∠E=∠B=30°∠ACE=∠ACB=85°在三角形ACE中∠CAE=180°-∠E-∠ACE=65°即△AEC各内角的度数分别为∠E=30°,∠ACE=85°,∠CAE=65°.[教学说明]通过具体的题型巩固学生对本课知识点的学习,同时复习了前面所学的知识点.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题4.5”中第1、2、3、4题.2.完成同步练习册中本课时的练习.【教学后记】3探索三角形全等的条件第1课时利用“边边边”判定三角形全等【教学目标】1.了解三角形的稳定性,三角形全等“边边边”的条件,经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.使学生在自主探索三角形全等的过程中,经历画图、观察、比较、交流等过程,从而获得正确的学习方式和良好的情感体验.3.培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验.【教学重点】三角形“边边边”的全等条件.【教学难点】用三角形“边边边”的条件进行有条理的思考并进行简单的推理.【教学过程】一、情景导入,初步认知1.出示幻灯片,两个全等的三角形,让学生找出其中相等的边和角,复习全等三角形所具有的性质.2.要画一个三角形与小明画的三角形全等需要什么条件?一定要知道所有的边长和所有的角度吗?条件能否尽可能的少?是需要一个条件?两个条件?三个条件?还是更多的条件?[教学说明]通过复习,使学生回忆起所学的和三角形全等相关的一些性质和概念.并通过问题的提出引导学生思考,鼓励学生通过画图、观察、比较、推理、交流等方式,在条件由少到多的过程中逐步探索出最后的结论.二、思考探究,获取新知做一做:1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30°,一条边为3cm;(2)三角形的两个内角分别为30°和50°;(3)三角形的两条边分别为4cm,6cm.[归纳结论]162 只给出一个或两个条件时,都不能保证所画的三角形一定全等.议一议:如果给出三个条件画三角形,你能说出有哪几种可能的情况?做一做:1.已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?2.已知一个三角形的三条边分别为4cm,5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?[教学说明]以问题串的形式引导学生逐步深入的思考可以使三角形全等的条件,问题的提出从条件的由少到多,由简到繁,一步步深入、引导,通过一系列的活动最终得出正确的结论.[归纳结论]三边分别对应相等的两个三角形全等.简写为“边边边”或“SSS”.探究:取三根长度适当的木条,用钉子钉成一个三角形的框架,你所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?[归纳结论]三角形具有稳定性,四边形不具有稳定性.[教学说明]让学生感受实例,直观、生动、便于理解.在此基础上,向学生提出:(1)你能举出一些生活中应用三角形的稳定性的例子吗?(2)图(2)的形状是可以改变的,它不具有稳定性.,你如何才能使图(2)的框架不能活动,也具有稳定性?从理论上升到实践,将知识延伸开去,应用到生活实践,才能真正做到学有所用.三、运用新知,深化理解1.如图,已知△ABC中,AB=AC,BD=DC,那么下列结论中不正确的是(C)A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC2.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=76°.3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH.试用你所学的知识说明理由.解:由于已知DE=DF,EH=FH,如图,连接DH,这是两三角形的公共边,于是,在△DEH和△DFH中,DE=DF,EH=FH,DH=DH162 所以△DEH≌△DFH(SSS),所以∠DEH=∠DFH(全等三角形的对应角相等).4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.分析:根据条件OA=OC,EA=EC,OA、EA和OC、EC恰好分别是△EAO和△ECO的两条边,故可以构造两个三角形,利用全等三角形解决解:如图,连接OE,在△EAO和△ECO中,OA=OC(已知),EA=EC(已知),OE=OE(公共边).∴△EAO≌△ECO(SSS),∴∠A=∠C(全等三角形的对应角相等).5.如图,AD=BC,AB=DC.∠A与∠D有什么样的数量关系?解:∠A+∠D=180°.理由:如图,连接AC,∵AD=BC,AB=DC,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∴AB∥CD,∴∠A+∠D=180°(两直线平行,同旁内角互补).6.已知:如图,在四边形ABCD中,AB=CB,AD=CD.∠C与∠A相等吗?为什么?解:∠C=∠A.理由:如图,连接BD.在△ABD和△CBD中,∵AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS).∴∠C=∠A.[教学说明]巩固练习,对课上的探索结论有更深一步的认识.四、师生互动,课堂小结1.通过本节课的学习,你学会什么知识?2.通过本节课的学习,你有什么体验?3.通过本节课的学习,你掌握了什么方法?五、教学板书【课后作业】1.布置作业:教材“习题4.6”中第1、2、3题.2.完成同步练习册中本课时的练习.162 【教学后记】第2课时利用“角边角”“角角边”判定三角形全等【教学目标】1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角”“角角边”的全等条件,了解三角形的稳定性.3.学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程.4.学生积极参与三角形全等条件的探究过程,从中体味协作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.【教学重点】三角形“角边角”“角角边”的全等条件.【教学难点】用三角形“角边角”“角角边”的条件进行有条理的思考并进行简单的推理.【教学过程】一、情景导入,初步认知1.我们已学过识别两个三角形全等的简便方法是什么,识别三角形全等是不是还有其它方法呢?2.有一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没有测量的仪器,你能保证新剪的纸片形状.大小和原来的一样吗?[教学说明]既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情.二、思考探究,获取新知探究:如果给出一个三角形的“两角一边”能确定这个三角形吗?1.让学生拿出提前准备好的60°角80°角和2厘米的线段,以小组为单位,进行操作拼接成三角形,再进行对比,看一看组成的三角形是否全等.[教学说明]通过实践操作,使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等,让他们尝到成功的喜悦.让学生懂得数学就来自于我们的生活,体会到数学与我们生活的联系.[归纳结论]如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简写成“角边角”或简记为“ASA”162 用符号语言表达为:在△ABC和△DEF中,∵∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).2.让学生拿出提前准备好的60°角45°角和3厘米的线段,以小组为单位,进行操作拼接成三角形.(1)如果60°角所对的边是3厘米.所组成的三角形是否全等.(2)如果45°角所对的边是3厘米.所组成的三角形是否全等.组员之间,小组之间进行对比.[归纳结论]如果两个三角形有两个角及其一个角的对边分别对应相等,那么这两个三角形全等.简写成“角角边”或简记为“AAS”.用符号语言表达为:在△ABC和△DEF中∵∠B=∠E,∠C=∠F,AC=DF∴△ABC≌△DEF(AAS)[教学说明]通过学生实践,让学生在合作学习中共同解决问题,使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力,提高他们归纳知识的能力和语言组织能力、表达能力.三、运用新知,深化理解1.如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);AC=BD(已知);∠C=∠D(已知);所以△AOC≌△BOD(ASA).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);CO=DO(已知);∠C=∠D(已知);所以△AOC≌△BOD(AAS).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);AO=BO(已知);∠C=∠D(已知);所以△AOC≌△BOD(AAS).2.如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?解:△AOC≌△BOD.理由是:∵O是AB的中点(已知)∴AO=BO(线段中点定义)又∵AB与CD相交于点O(已知)162 ∴∠1=∠2(对顶角相等)在△AOC与△BOD中,∠A=∠B(已知)AO=BO(已证)∠1=∠2(已证)∴△AOC≌△BOD(ASA)3.如图,∠1=∠2,∠D=∠C,试说明△ADB≌△ACB.解:∵在△ADB中,∠3=180°-∠1-∠D(三角形内角和定理).∵在△ACB中,∠4=180°-∠2-∠C(三角形内角和定理),而∠1=∠2,∠D=∠C(已知),∴∠3=∠4(等量代换),∴在△ADB和△ACB中,∠1=∠2(已知),AB=AB(公共边),∠3=∠4(已证),∴△ADB≌△ACB(ASA).4.如图,AB=AC,∠B=∠C,△ABD≌△ACE吗?为什么?解:△ABD≌△ACE.理由:△ABD和△ACE中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABD≌△ACE(ASA)5.如图,∠B=∠C,AD平分∠BAC,你能说明△ABD≌△ACD吗?若BD=3cm,则CD有多长?解:∵AD平分∠BAC,∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,∠B=∠C(已知),∠BAD=∠CAD(已证),AD=AD(公共边).∴△ABD≌△ACD(AAS),∴BD=CD,∵BD=3cm(已知),∴CD=BD=3cm(等量代换).6.如图,在△ABC中,BE⊥AD于E,CF⊥AD于F,且BE=CF,那么BD与DC相等吗?你能说明理由吗?解:BD=DC.理由:∵BE⊥AD于E,CF⊥AD于F,∴∠BED=∠CFD=90°.在△BED与△CFD中,∠BED=∠CFD(已证),∠BDE=∠CDF(对顶角相等),BE=CF,∴△BED≌△CFD(AAS),∴BD=DC.[教学说明]使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等.在学生做题的过程中,学生还能体会到严谨的数学思想.162 四、师生互动,课堂小结本节课我们经历了对符合两角一边的条件的所有三角形进行画图验证,探索出三角形全等的另两个定理,它们分别是?五、教学板书【课后作业】1.布置作业:教材“习题4.7”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】第3课时利用“边角边”判定三角形全等【教学目标】1.能主动积极探索出三角形全等的条件“SAS”.2.能熟练运用“SAS”判别方法来进行有条理的思考并进行简单的证明.3.初步综合运用四种判别方法来判别三角形全等.4.学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程.5.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.【教学重点】掌握三角形全等的条件“SAS”,并能利用它来判定三角形是否全等.【教学难点】探索三角形全等的条件“SAS”的过程及几种方法的综合应用.【教学过程】一、情景导入,初步认知我们已学过判定两个三角形全等的哪些条件?我们还没有研究三个条件的哪一种情况?[教学说明]引导学生积极的回顾旧知,利于将知识连贯起来.二、思考探究,获取新知探究:如果给出一个三角形的“两边一角”能确定这个三角形吗?1.请同学们想一想,已知三角形的两条边和一个角时会有几种不同的基本情况?2.操作并研讨.(1)让学生画一个三角形,使它满足两条边长分别为2cm和3cm,且它们的夹角为40°.画完后用剪刀剪下来,和其他同学剪的三角形比较,看看是否能够重合.(2)让学生画一个三角形,使它满足两条边长分别为2cm和3cm,且其中一条边的对角是40°.(3)满足条件的三角形出现了两种形状完全不同的三角形162 3.由此,你能得出什么结论?[归纳结论]两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.[教学说明]学生通过画图、观察、比较,终于明白为什么两条边及一边的对角这三个条件不能确定三角形的形状和大小的道理.三、运用新知,深化理解1.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是(B)A.∠A=∠DB.∠B=∠EC.∠C=∠FD.以上三个均可以2.如图,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠CAE=20°.3.如图,已知AC⊥BD,BC=CE,AC=DC,则∠B与∠D的关系是互余.4.如图,AC=AD,AB平分∠CAD,那么BC=BD吗?为什么?解:BC=BD,理由是:AB平分∠CAD,∠CAB=∠DAB.在△ABC和△ABD中,AC=AD,∠CAB=∠DAB,AB=AB,△ABC≌△ABD(SAS),BC=BD.5.如图,AD∥CB,AD=CB,那么∠B=∠D吗?为什么?解:∠B=∠D,理由是:AD∥CB,∠DAC=∠BCA.在△ABC和△CDA中,BC=AD,∠BCA=∠DAC,AC=CA,ABC≌△CDA(SAS),162 ∠B=∠D.6.如图,已知在△ABC中,AB=AC,∠1=∠2.试判断AD与BC,BD与DC的关系并说明理由.解:在△ABD和△ACD中,∵AB=AC(已知)∠1=∠2(已知)AD=AD(公共边)∴△ABD≌△ACD(SAS).∴BD=CD,∠3=∠4.又∵∠3+∠4=180°,即2∠3=180°,∴∠3=90°,∴AD⊥BC.[教学说明]检验学生的掌握情况,培养学生的逻辑思维能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题4.8”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】4用尺规作三角形【教学目标】1.会利用尺规作三角形:已知三边作三角形,已知两角及夹边作三角形,已知两边及夹角作三角形.2.会写出三角形的已知、求作和作法.3.能对新作三角形给出合理的解释.4.在用尺规作三角形与已知三角形的过程中,体会、思考作图的合理性及依据.5.通过师生共同观察、探索、交流、操作,品尝成功的喜悦,形成良好的思维品质,养成科学严谨的学习态度.【教学重点】作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形.【教学难点】作图语言的准确应用,作图的规范与准确.【教学过程】一、情景导入,初步认知1.已知:a求作:AB,使AB=a.162 2.已知:∠α求作:∠AOB,使∠AOB=∠α.[教学说明]通过做一条线段等于已知线段.做一个角等于已知角的复习,为本节课做三角形打好基础.二、思考探究,获取新知我们已会做一条线段等于已知线段.做一个角等于已知角,你能做一个三角形与已知三角形全等吗?探究1:已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,∠α.求作:△ABC,使得BC=a,AB=c,∠ABC=∠α.作法与过程:(1)作一条线段BC=a;(2)以B为顶点,BC为一边,作角∠DBC=∠α;(3)在射线BD上截取线段BA=c;(4)连接AC,△ABC就是所求作的三角形.[教学说明]给出示范和作法,让学生模仿,教师可以在黑板上做一次示范,让学生跟着一起操作,并在画完图后,让学生再自己操作一遍.而在下面的作图中,就让学生小组内讨论、交流,通过集体的力量完成,教师再给以一定的指导.探究2:已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段c.求作:△ABC,使得∠A=∠α,∠B=∠β,AB=c作法:(1)作=∠α;(2)在射线上截取线段=c;(3)以为顶点,以为一边,作∠=∠β,交于点.△ABC就是所求作的三角形.[教学说明]先让学生独立思考,探索作图的过程,对可以自己作出图形的学生,要求他们在小组内交流,用自己的语言表述作图过程.教师要注意提醒学生在作图过程中,是以哪个点为圆心,什么长度为半径作图.探究3:已知三角形的三边,求作这个三角形.已知:线段a,b,c.求作:△ABC,使得AB=c,AC=b,BC=a.[教学说明]162 在完成三个作图后,同学们要比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等.在此基础上,利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性.三、运用新知,深化理解1.已知三边作三角形,用到的基本尺规作图为(B)A.作一个角等于已知角B.作一条线段等于已知线段C.平分已知角D.作已知直线的垂线2.下列各题中,属于尺规作图的是(A)A.画一个40°的角B.用直尺三角板画平行线C.用直尺的边缘画垂线D.用圆规在已知直线上截取一线段等于已知线段3.用尺规作图,下列已知条件:a.两边及夹角,b.三边,c.两角及夹边,d.两边及其中一边的对角.不能作出唯一三角形的是d(填序号).4.已知线段a、b、c,求作△ABC,使BC=a,AC=b,AB=c,下面作法的合理顺序为②①③.①分别以B、C为圆心,c、b为半径作弧,两弧交于点A;②作直线BP,在BP上截取BC=a;③连结AB、AC,△ABC为所求作三角形.5.已知:线段c,∠1.求作:△ABC,使∠C=90°,∠A=∠1,AB=c.作法:(1)作∠EAF=∠1.(2)在射线AE上截取AB=c.(3)过点B作BC⊥AF交AF于C,则△ABC就是所求作的三角形.6.已知两条直角边,求作直角三角形(要求写出已知、求作、作法).解:已知:线段a、b,求作:△ABC,使∠C=90°,AC=b,BC=a.作法:提示,先作∠C=90°.7.已知一条直角边和斜边上的高,求作直角三角形(要求写出已知、求作、作法)解:已知:线段a、h.求作:△ABC,使∠ACB=90°,BC=a,高CD=h.作法:提示,先作出Rt△BCD,使∠BDC=90°,BC=a,CD=h.8.已知:线段a、b.求作:等腰三角形△ABC,使AB=AC=a,高BD=b.解:提示:先作Rt△ABD,使∠ADB=90°,AB=a,BD=b.[教学说明]对本节的知识进行巩固练习.考察学生的应变能力,培养学生的转换思想.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题4.9”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】5利用三角形全等测距离【教学目标】1.能利用三角形的全等解决实际问题,体会数学与实际生活的联系.2.能在解决问题的过程中,锻炼学生分析、解决问题的能力.3.激发学生学习数学的积极性,培养学生探索的勇气.【教学重点】能利用三角形的全等解决实际问题.【教学难点】能在解决问题的过程中进行有条理的思考和表达.【教学过程】一、情景导入,初步认知1.复习全等三角形的性质及判定条件.2.在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!(以小组为单位抢答或个人抢答或根据不同情况而定)题如下:[教学说明]通过第1个问题的提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础;第2个问题是为学习新内容作铺垫,向学生进一步渗透理论联系实际的思想.二、思考探究,获取新知引入一位经历过战争的老人讲述的一个故事,(图片显示)在一次战役中,为了炸毁与我军阵地隔河相望的敌军碉堡,需要测出我军阵地到敌军碉堡的距离.由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功.162 配合简图如下:你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?[教学说明]教师引导学生可以用全等的方法测距离,来解决生活中的许多相关问题.小明在上周末游览风景区时,看到了一个美丽的池塘,他想知道最远两点A、B之间的距离,但是他没有船,不能直接去测.手里只有一根绳子和一把尺子,他怎样才能测出A、B之间的距离呢?把你的设计方案在图上画出来,并与你的同伴交流你的方案,看看谁的方案更便捷.方法1:先在地上取一个可以直接到达A点和B点的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.△ABC≌△DEC(SAS)AB=DE方法2:如图,先作三角形ABC,再找一点D,使AD∥BC,并使AD=BC,连结CD,量CD的长即得AB的长.解:连结AC,由AD∥CB,可得∠1=∠2;在△ACD与△CAB中:△ACD≌△CAB(SAS)AB=CD方法3:如图,找一点D,使AD⊥BD,延长AD至C,使CD=AD.连结BC,量BC的长即得AB的长.△ADB≌△CDB(SAS)BA=BC[教学说明]学生通过讨论出的三种方法,能够初步感受到成功的喜悦.三、运用新知,深化理解1.如图要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是(B)A.SSSB.ASAC.AASD.SAS162 2.如图所示小明设计了一种测工件内径AB的卡钳,问:在卡钳的设计中,AO、BO、CO、DO应满足下列的哪个条件?(D)A.AO=COB.BO=DOC.AC=BDD.AO=CO且BO=DO3.为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,有以下两种方法:(1)如图所示,找一处看得见A,B的点P,连接AP并延长到D,使PA=PD,连接BP并延长到C,使PC=PB.测得CD=35m,就确定了AB也是35m,说明其中的理由;解:由△APB≌△DPC(SAS),所以CD=AB.(2)如图所示,也可先过B点作AB的垂线BF,再在BF上取C,D两点,使BC=CD.接着过点D作BD的垂线DE交AC的延线长于E,则测出DE的长即为A,B的距离.你认为这种方案是否切实可行,请说出你的理由.作BD⊥AB,ED⊥BF的目的是什么?若满足∠ABD=∠BDE≠90°,此方案是否仍然可行?为什么?解:由△ACB≌△ECD得DE=BA目的是使DE∥AB,可行.4.如图所示,小王想测量小口瓶下半部的内径,他把两根长度相等的钢条AA′,BB′的中点连在一起,A,B两点可活动,使M,N卡在瓶口的内壁上,A′,B′卡在小口瓶下半部的瓶壁上,然后量出AB的长度,就可量出小口瓶下半部的内径,请说明理由.解:因为△A′OB′≌△AOB,所以AB=A′B′[教学说明]对本节课的知识进一步的理解、巩固、提高.四、师生互动,课堂小结师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了哪些方案使不能直接测量的物体间的距离转化为可以测量的距离(着重思考如何把距离的测量转化为三角形全等的问题).学生回忆、交流,尝试着对所学知识进行归纳、梳理.教师引导学生回忆所学内容,与学生一起进行补充完善,使学生更加明确所学知识.五、教学板书162 【课后作业】1.布置作业:教材“习题4.10”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.使学生进一步掌握三角形各部分名称与意义、三角形内角和、三角形分类的有关知识.2.掌握全等三角形的性质和判定.3.引导学生通过练习回忆已学过的知识,提高逻辑思维能力、合情推理能力和归纳概括能力,训练思维的灵活性,领悟数学思想.4.在整理知识点的过程中发展学生的独立思考习惯,让学生感受成功,并找到解决三角形相关问题的一般方法.【教学重点】全等三角形的判定.【教学难点】三角形的应用.【教学过程】一、知识结构[教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解162 1.三角形的相关概念①不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“△”表示;②顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”;③组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;④∠A、∠B、∠C为△ABC的三个内角.2.三角形中三边的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.三角形中三角的关系三角形内角和定理:三角形的三个内角的和等于180°.4.三角形按内角的大小可分为三类:锐角三角形、直角三角形、钝角三角形.5.三角形的角平分线、中线和高线.①任意三角形都有三条角平分线,并且它们相交于三角形内一点;②三角形有三条中线,它们相交于三角形内一点;③任意三角形都有三条高线,它们所在的直线相交于一点.6.全等图形①两个能够完全重合的图形称为全等图形;②全等图形的性质:全等图形的形状和大小都相同.7.全等三角形①能够完全重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”;②用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上;③全等三角形的性质:全等三角形的对应边、对应角相等.8.全等三角形的判定①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”;②两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”;③两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”;④两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.9.三角形具有稳定性.10.作三角形.熟练以下三种三角形的作法及依据.①已知三角形的两边及其夹角,作三角形;②已知三角形的两角及其夹边,作三角形;③已知三角形的三边,作三角形.11.利用三角形全等测距离利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难测量或无法测量的距离转化成已知线段或较容易测量的线段的长度,从而得到被测距离.[教学说明]复习本章所有知识点,可采用提问的方式进行.三、典例精析,复习新知例1下列各组长度的线段为边,能构成三角形的是(D)A.7cm、5cm、12cmB.6cm、8cm、15cmC.8cm、4cm、3cmD.4cm、6cm、5cm例2如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=8,AO=10,AB=5,则CD的长为(C)A.10B.8C.5D.不能确定162 例3如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是(C)A.∠ADB=∠ADCB.∠B=∠CC.DB=DCD.AB=AC例4生活中,我们经常会看到如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的(A)A.稳定性B.全等性C.灵活性D.对称性例5如图AB=CD,BC=AD,则∠B与∠D相等吗?试说明你的理由.解:∠B=∠D.理由:如图,连接AC,因AB=CD,AC=CA,BC=DA,故△ABC≌△CDA,故∠B=∠D.例6如图,在△ABC中,∠A=2∠B,CD平分∠ACB.试判断BC、AC、AD的数量关系并说明理由.解:BC=AC+AD.理由:如图,在BC上截取CE=CA,连DE,易证得△ADC≌△EDC,故∠A=∠DEC,从而∠DEC=2∠B,又∠DEC=∠B+∠BDE,故∠B=∠BDE,故BE=DE,于是BC=AC+AD.四、复习训练,巩固提高1.如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是(C)A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形2.根据下列条件作三角形,不能唯一确定三角形的是(A)A.已知三个角B.已知三条边C.已知两角和夹边D.已知两边和夹角3.尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图法画一个出来,并说明你的理由.162 解:(1)作线段DE,使DE=AB;(2)作∠EDM与∠DEN,使∠EDM=∠BAC,∠DEN=∠ABC,两角在DE的同侧,交于F点.则△DEF即为所求.图略.4.已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.试判断:(1)△ABC与△DEF全等吗?(2)BE与CF相等吗?解:(1)∠ABC≌DEF.理由:∵AC∥DF,∴∠ACB=∠F,在△ABC与△DEF中,∠ACB=∠F,∠A=∠D,AB=DE,∴△ABC≌△DEF(AAS).(2)BE=CF.理由:∵△ABC≌△DEF,∴BC=EF,∴BC-EC=EF-EC,即BE=CF.5.如图,已知AB=AD,AC=AE,∠1=∠2,△ABC≌△ADE吗?为什么?解:△ABC≌△ADE.理由:∵∠1=∠2,∴∠DAE=∠BAC,∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS).6.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.试判断:(1)AE与CF相等吗?(2)AF与CE是否平行?并各自说明理由.解:(1)AE=CF.理由:∵BF=DE,∴BF+FE=DE+FE,即BE=DF,又∵AB=CD,∠B=∠D,△ABE≌△CDF(SAS),∴AE=CF.(2)AF∥CE.理由:由△ABE≌△COF得AE=AF,∠AEB=∠CFD,∴△AEF≌△CFE(SAS),即∠AFE=∠CEF,∴AF∥CE(内错角相等,两直线平行).7.如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,AD=AC,AF平分∠CAE交CE于F.请你猜想FD与BC有怎样的关系,并说明理由.解:FD∥BC.理由:由AF平分∠CAE,得∠CAF=∠DAF.又因为AC=AD,AF=AF,所以△ACF≌△ADF.(SAS)所以∠ACF=∠ADF.又因为∠ACB=90°,CE⊥AB,所以∠CBE和∠ACE都是∠ECB的余角,所以∠CBE=∠ACE,所以∠ADF=∠CBE,162 所以FD∥BC.[教学说明]对本章内容的知识进一步的理解、巩固、提高.五、师生互动,课堂小结通过本节课的复习,你有哪些收获?还存在哪些疑惑?【课后作业】1.布置作业:教材“复习题”中第3、6、7、9、12、14题.2.完成同步练习册中本课时的练习.【教学后记】第五章图形的轴对称1轴对称现象【教学目标】1.通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.2.通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴.3.通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活.【教学重点】正确理解轴对称图形以及轴对称的概念.【教学难点】能正确区分轴对称图形和轴对称.【教学过程】一、情景导入,初步认知从各小组收集的图片中有代表性的选择一些,用投影仪演示.使学生能够形象直观地感受图形的对称.[教学说明]通过幻灯片演示.使学生能够形象直观地感受图形的对称.使学生明白对称在美学和自然界中的作用.二、思考探究,获取新知1.观察下列图片,它们有什么共同特点?162 [归纳结论]如果把一个平面图形沿着某条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线叫做对称轴.理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合.2.做一做:将一张纸对折后,用笔尖扎出如图所示的图形,然后将纸打开铺平,你会得到什么图形?你还能用这样的方法得到其它的轴对称图形吗?3.议一议,观察课本(P116图5-4)中的每组图片,你发现了什么?[归纳结论]如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.理解轴对称图形应注意三点:(1)“轴对称”是两个图形;(2)对折;(3)重合.[教学说明]通过感官加深对轴对称图形和成轴对称的理解.三、运用新知,深化理解1.如图所示的几个图案中,是轴对称图形的是(A)2.如图所示,下面的5个英文字母中是轴对称图形的有(B)A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有(B)A.1个B.2个C.3个D.4个4.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.解:(3)比较独特,它有无数条对称轴,其他图形只有两条对称轴.162 5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.解:(1)2条;(2)4条;(3)5条;(4)3条.画图略.6.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并简述你的理由.解:②不是轴对称图形7.如图所示,以虚线为对称轴画出图形的另一半.解:略[教学说明]进行适当的由浅入深,由感性到理性的一些练习,为学生的知识技能和运算能力打好基础.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题5.1”中第1、3题.2.完成同步练习册中本课时的练习.【教学后记】162 2探索轴对称的性质【教学目标】1.掌握轴对称的性质,学会运用轴对称性质作图.2.通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题.3.培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐.【教学重点】理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质.【教学难点】轴对称性质的探索及运用.【教学过程】一、情景导入,初步认知将一张白纸对折后用笔尖扎出“14”这个数字,将纸打开后铺平.回答几个问题:(1)图中的两个“14”有什么关系?(2)在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与直线l有什么关系?点F与点F′呢?(3)线段AB与线段A′B′有什么关系?CD与C′D′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.[教学说明]指导学生有目的的预习教材,培养学生的自学能力.二、思考探究,获取新知做一做:探索飞机的“奥秘”.观察图示的飞机,从这个轴对称图形中:(1)找出它的对称轴.(2)连接点A与点A′的线段被对称轴平分吗?与对称轴互相垂直吗?连接点B与点B′的线段呢?(3)线段AD与线段A′D′是否相等?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.[归纳结论]在轴对称或两个成轴对称的图形中:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.[教学说明]162 让学生在准备好的图案上动手操作,通过观察、测量、对折等解决以上问题.解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质.三、运用新知,深化理解1.下列说法错误的是(C)A.等边三角形是轴对称图形B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分2.下列说法正确的是(B)A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形3.设AB两点关于直线MN轴对称,则直线MN垂直平分线段AB.4.若直角三角形是轴对称图形,则其三个内角的度数分别为45°,45°,90°.5.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴点B′,如图所示,则与线段BC相等的线段是B′C,与线段AB相等的线段是BB′和AB′,与∠B相等的角是∠BAB′和∠B′,因此,∠B=60°.6.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)解:图略(1)中(2)林(3)南(4)京(5)米(6)来(7)共(8)品(9)吉(10)木(11)釜7.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.解:图(A)是轴对称图形.如图,若以EF为对称轴,则点A与点B、点M与点N.点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC与∠BND等是对应角.162 8.如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2,连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?解:画图如图所示,易知PP1,PP2关于OA、OB对称,∴PM=P1M,PN=P2N,∴△PMN的周长=P1P2,∴△PMN的周长是5cm.[教学说明]通过不同的题型加深学生对轴对称图形和对称轴的理解,对本节知识进行巩固练习.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题5.2”中第1、3、4题.2.完成同步练习册中本课时的练习.【教学后记】3简单的轴对称图形第1课时等腰三角形的性质【教学目标】1.探索并掌握等腰三角形的轴对称性及其相关性质.2.通过探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念.3.通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念.【教学重点】162 掌握等腰三角形的轴对称性及其相关性质.【教学难点】探索等腰三角形的轴对称性及其性质的过程.【教学过程】一、情景导入,初步认知观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?[教学说明]通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形,乐于探索研究的学习品质及全面思考的能力.二、思考探究,获取新知探究1:等腰三角形1.认识等腰三角形.给出三种等腰三角形的图形,包括锐角、钝角、直角形状的图形.2.介绍等腰三角形的概念及各部分名称.给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象.如艾菲尔铁塔、埃及金字塔等.3.等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有其他一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?4.思考:(1)等腰三角形是轴对称图形吗?找出对称轴.(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?[归纳结论]等腰三角形的特征:①等腰三角形是轴对称图形②等腰三角形的顶角平分线.底边上的中线.底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.③等腰三角形的两个底角相等.[教学说明]探索等腰三角形的轴对称性及其有关性质,教学时,可以让学生先动手折一折等腰三角形纸片,自己发现有哪些结论.然后小组成员一起通过操作验证自己的结论,并由此归纳现象,探索等腰三角形的有关特征.探究2:等边三角形1.等边三角形的有关概念?2.你能发现等边三角形的哪些特征?[教学说明]教师应鼓励学生通过操作和思考分析等边三角性的轴对称性,并尽可能多的探索它的特征.探究3:你有哪些方法可以得到一个等腰三角形?与同伴交流.1.折纸:将长方形纸片对折,沿对角线折叠,再沿折痕展开.2.利用圆规.[教学说明]以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的.同时充分体现了数学来源于生活,同时也更好的服务于生活的理念.三、运用新知,深化理解162 1.下列图形中,不是轴对称图形的是(D)A.正方形B.等边三角形C.等腰三角形D.平行四边形2.等腰三角形的一个内角等于100°,则另两个内角的度数分别为(A)A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°3.下列说法正确的是(B)A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形4.填空题:(1)①如图所示,在△ABC中,①因为AB=AC,所以∠=∠;②因为AB=AC,∠1=∠2,所以BD=,⊥.(2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为.(3)已知等腰三角形的一个角是80°,则顶角为.(4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为.(5)如图所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=.答案:(1)①BC②DC(或BC)ADBC(2)40°(3)80°或20°(4)cm2(5)40°5.在等腰三角形ABC中,AB=AC,周长为14cm,AC边上的中线BD把△ABC分成了周长差为4cm的两个三角形,求△ABC各边长.解:如图,设AD=x,则DC=x,AB=2x.设BC=y.由题意可以列方程:162 2x+2x+y=14,(2x+x+BD)-(BD+x+y)=4,解之得:x=3,y=2.或2x+2x+y=14,(BD+x+y)-(2x+x+BD)=4,解之得:x=,y=.显然第二种情况不符合“三角形两边之和大于第三边”,所以舍去.所以△ABC的三边长分别为:AB=AC=2x=6cm,BC=y=2cm.6.一个等腰三角形的两个内角度数之比为4∶1,求这个三角形各角度数.解:△ABC中AB=AC,所以∠C=∠B,若∠BAC∶∠B=4∶1,则:∠BAC+∠B+∠C=6∠B=180°,所以∠B=30°=∠C,∠BAC=120°.若∠B∶∠BAC=4∶1,则:∠BAC+∠B+∠C=9∠BAC=180°,所以∠BAC=20°,∠B=∠C=80°.7.如图,已知AB=AC,BD=DC,AE平分∠CAF,试判断AE与AD的位置关系,并说明理由.解:AE⊥AD.说理如下:因为AB=AC,BD=DC,所以AD⊥BC(等腰三角形三线合一),∠B=∠C.因为∠CAF=∠B+∠C,所以∠CAF=2∠B.因为AE平分∠CAF,所以∠CAF=2∠EAF,所以∠EAF=∠B,所以AE∥BC(同位角相等,两直线平行),所以∠EAD=∠BDA=90°,所以AE⊥AD.[教学说明]对本节内容的知识进一步的理解、巩固、提高.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书162 【课后作业】1.布置作业:教材“习题5.3”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时线段垂直平分线的性质【教学目标】1.探索并了解线段垂直平分线的有关性质.2.尺规作图.3.应用线段垂直平分线的性质解决一些实际问题.4.从生活实践中探索轴对称现象的共同特征,进一步发展空间观念.5.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感.【教学重点】线段的垂直平分线的性质及作法、应用.【教学难点】用尺规作线段的垂直平分线.【教学过程】一、情景导入,初步认知1.什么是轴对称图形及轴对称图形的性质?2.下列图形哪些是轴对称图形?[教学说明]使学生对小学学过的生活中的轴对称图形进一步加深印象,熟悉轴对称图形及对称轴,为本节课学习做铺垫.二、思考探究,获取新知探究1:线段的对称性1.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?2.做一做:按下面步骤做:162 ①用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.②把纸展开.3.观察自己手中的图形,回答下列问题:①折痕与AB有什么样的位置关系?②AO与OB相等吗?能说明你的理由吗?[归纳结论]①线段是轴对称图形.它的对称轴有两条:一条是线段AB本身所在的直线;另一条是折痕.②它的对称轴垂直于这条线段并且平分它.③垂直于一条线段且平分这条线段的直线叫这条线段的垂直平分线(简称中垂线).探究2:垂直平分线的性质动手操作:作线段AB的中垂线MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,再换别的点试试,你能发现什么?PA=PBP1A=P1B由此你能得到什么规律?[归纳结论]线段垂直平分线上的点到这条线段两个端点的距离相等.[教学说明]可以运用全等来说明.教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想.探究3:作线段的垂直平分线1.已知线段AB,请画出它的垂直平分线.作法:第一步:分别以A、B为圆心,以大于AB一半的长度为半径画弧,两弧在AB的两侧分别相交于点M和点N;第二步:经过点M和点N画直线;直线MN就是线段AB的垂直平分线.2.各小组讨论:为什么所作的直线就是已知线段的垂直平分线?[教学说明]尺规作图能培养学生严谨的学习习惯,严密的逻辑思维和空间想象能力.尺规作图既能展现数学美,又能培养学生的学习兴趣.三、运用新知,深化理解1.见教材P124例12.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB162 的长度为(B)A.6B.5C.4D.33.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于(C)A.80°B.70°C.60°D.50°4.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE的长.解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,∴ED+DC+EC=24,①BE+BD-DE=12.②①-②得,DE=6.5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.6.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连结BE.试判断EF与DE的数量关系并说明理由.解:(1)直线l即为所求.(2)EF=2DE.理由:在Rt△ABC中,∵∠A=30°,∴∠ABC=60°,162 又∵l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°∴∠EBC=30°=∠EBA,∠FEC=60°又∵ED⊥AB,EC⊥BC∴ED=EC.在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.[教学说明]通过对不同题型的练习来对本节知识进行巩固.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题5.4”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】第3课时角平分线的性质【教学目标】1.掌握作已知角的平分线的尺规作图方法.2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.3.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉.4.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.【教学重点】角平分线的性质.【教学难点】角平分线性质的应用.【教学过程】一、情景导入,初步认知不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?162 [教学说明]体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙打下基础.二、思考探究,获取新知探究1:角的对称性角是轴对称图形吗?把∠AOB对折,你发现了什么?[归纳结论]角是轴对称图形,对称轴是角平分线所在的直线.探究2:角平分线的性质动手操作:1.把∠BAC对折.2.在折痕(即角平分线)上任意找一点O,3.过点O折AC边的垂线,得到新的折痕OD,其中,点D是折痕与AC的交点,即垂足.4.过点O折AB边的垂线,将纸打开,新的折痕与AB边交点为E.观察:OD与OE有什么关系?改变O的位置,OD与OE还存在这种关系吗?[归纳结论]角的平分线上的点到角两边的距离相等.几何语言:∵AO是∠BAC的平分线,OE⊥AB,OD⊥AC,∴OE=OD.[教学说明]从实验探索中发现角的平分线的性质,培养学生的数学抽象概括能力及理性精神,让学生体验成功.探究3:尺规作角平分线已知:∠BOA;求作:∠BOA的角平分线.作法:1.以O为圆心,任意长度为半径作弧,分别与角的两边交于点D、E;2.分别以D、E为圆心,大于DE一半的相同长度为半径作弧,两弧在角的内部交于C;3.作射线OC,∴射线OC为∠BOA的角平分线.你能证明吗?[教学说明]从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力,让学生体验成功的乐趣.三、运用新知,深化理解162 1.见教材P126例22.如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是(A)A.3B.4C.5D.63.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长为(B)A.4cmB.6cmC.10cmD.以上都不对4.如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有(D)A.一处B.二处C.三处D.四处5.如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.DE与DF相等吗?为什么?解:DE=DF.理由:如图,作DM⊥AB于M,DN⊥AC于N,又∵AD平分∠BAC,∴DM=DN,∵∠EAF+∠EDF=180°,∴∠AED+∠AFD=360°-180°=180°,∵∠AFD+∠CFD=180°,∴∠AED=∠CFD,∴△DME≌△DNF(AAS),∴DE=DF.6.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.AC与BC相等吗?为什么?解:AC=BC.理由:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE,∵∠DCA=∠ECB,∠ADC=∠BEC=90°,∴△ACD≌△BCE(ASA),∴AC=BC.7.如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.162 (1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.解:(1)图略,仓库G在∠NOQ的平分线上,(2)仓库G到铁路的实际距离是100m.8.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.解:他这种作法对,理由如下:由作法可知:OC=OD,OB=OA,∠COB=∠DOA,∴△BCO≌△ADO(SAS),AC=BD,∴∠OCE=∠ODE,∵∠AEC=∠BED,∴△ACE≌△BDE(AAS),∴CE=DE,∵OE=OE,∴△OCE≌△ODE(SSS),∴∠COE=∠DOE,即OE平分∠MON.[教学说明]通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题.解决知识盲点,培养学生的创新精神和实践能力.四、师生互动,课堂小结我们这节课学习了哪些知识?五、教学板书【课后作业】1.布置作业:教材“习题5.5”中第1、2、3题.2.完成同步练习册中本课时的练习.【教学后记】4利用轴对称进行设计162 【教学目标】1.了解什么样的图形是轴对称图形及其对称轴的条数,能画出简单图形的对称轴及作出简单轴对称图形的另一半.2.通过大量的观察分析、总结归纳和动手操作,不但对轴对称的基本知识有了充分的理解,而且体验到了轴对称的美与和谐.3.感受轴对称与生活的广泛联系和丰富的文化价值.【教学重点】通过观察、操作,进一步理解对称及其性质.【教学难点】利用轴对称的知识,描述图形经折叠剪开后的图案.【教学过程】一、情景导入,初步认知我们生活在一个充满美丽与和谐的空间,在这里大到有宏伟的建筑,小到有精巧的剪纸都是对称的.轴对称带给我们的美丽无时无刻不在感染着我们.今天,就让我们也为这美妙的世界添上一笔靓丽的色彩:利用轴对称进行设计.[教学说明]调动学生的积极性,激发兴趣.二、思考探究,获取新知1.请同学们取出准备好的长30cm、宽6cm的纸条.如果先把纸条纵向对折,再折成“手风琴”,然后在上面画上其他图案,会得到怎样的花边,先猜一猜,再做一做,把你得到的花边剪下来.观察展开图回答下面的问题:在“手风琴”式的折纸中,纸上的折痕是对称轴,折痕所在的直线的位置关系是相互平行,而且相邻两条折痕的距离相等.2.阅读课本P128“做一做”第2题,完成下面的问题.(1)经过步骤①和步骤②后,在这张正形纸上留下什么样折痕?请在图(1)中画出来.(2)经过步骤③得到怎样的图案?(3)将正方形纸按上面方式对折3次,然后沿圆弧剪开(如图(2)),去掉较小的部分,展开后得到怎样的图案?将正方形纸对折3次后,在纸上留下什么样的折痕,在图(3)中画出.(4)在这种对角折纸中,若纸上留下的折痕有n条,那么剪下来的图案至少有几条对称轴.[教学说明]让学生学会简单的剪纸操作,为后面的操作活动做好准备,同时在自己亲自动手制作的活动中更是积极地动手动脑,相互帮助,全身心地投入到整个活动中.三、运用新知,深化理解1.下列命题中,正确的是(D)A.两个全等的三角形合在一起是一个轴对称图形B.等腰三角形的对称轴是底边上的中线C.等腰三角形底边上的高就是底边的垂直平分线162 D.一条线段可以看做是以它的垂直平分线为轴的轴对称图形2.下列说法中,正确的是(B)A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形3.如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半.解:作图略4.下图是由四个小正方形组成的L形图案,请你再添加一个小正方形使它们能组成一个轴对称图形.(给出三种不同的作法)解:作图略5.如图甲,正方形被分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.(在所设计的图案中,若涂黑的部分全等则视为同一种涂法,如图乙和图丙属同一种涂法).解:作图略6.两个圆两条线段两个三角形,展开联想,设计一幅轴对称的图案,并阐述图案所表达的含义.解:略[教学说明]对本节内容的知识进一步的理解、巩固、提高.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题5.6”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】162 章末复习【教学目标】1.梳理全章内容,建立知识体系;掌握等腰三角形、线段、角等简单的轴对称图形的性质并灵活应用;综合运用轴对称的有关性质,解决实际问题.2.经历观察、折叠、剪纸、欣赏与设计等数学活动过程,进一步发展空间观念,丰富学生对轴对称的直观体验和理解,发展学生有条理的思考和语言表达能力.3.让学生进一步了解轴对称在现实生活中的广泛应用和丰富的文化价值,增进学生学习数学的兴趣.【教学重点】会找出简单的轴对称图形的对称轴;了解一些简单轴对称图形(角、线段、等腰三角形)的性质并学会应用.【教学难点】轴对称的有关性质在现实生活中的应用.【教学过程标】一、知识结构[教学说明]引导学生自主发现各知识点之间的联系,形成较完整的认知结构.二、释疑解惑,加深理解1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.(2)理解轴对称图形要抓住以下几点:①指一个图形;②存在一条直线(对称轴);③图形被直线分成的两部分互相重合;④轴对称图形的对称轴有的只有一条,有的则存在多条;⑤线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;(3)轴对称图形的对应线段、对应角相等.(4)轴对称图形对应点所连的线段被对称轴垂直平分.2.轴对称(1)对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴.可以说成:这两个图形关于某条直线对称.(2)理解轴对称应注意:①有两个图形;②沿某一条直线对折后能够完全重合;③轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;162 ④对称轴是直线而不是线段;(3)如果两个图形关于某条直线对称,那么对应线段、对应角都相等.(4)如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分.3.角平分线的性质①角平分线所在的直线是该角的对称轴.②性质:角平分线上的点到这个角的两边的距离相等.4.线段的垂直平分线①垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线.②性质:线段垂直平分线上的点到这条线段两端点的距离相等.5.等腰三角形①等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴.②等腰三角形的两个底角相等.③等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”.6.等边三角形①等边三角形的三边都相等,三个内角都是60°.②等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴.7.图案设计作出简单平面图形经过轴对称后的图形,实际上是轴对称图形的性质的灵活运用.[教学说明]学生通过梳理知识体系,不仅能提高分析问题的能力,而且能够发现自身的不足,通过查漏补缺,尽快完善知识结构.三、典例精析,复习新知例1如下书写的四个汉字,其中为轴对称图形的是(B)例2等腰三角形的对称轴是(D)A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线例3如图,在四边形ABCD中,边AB与AD关于AC对称,则下面结论正确的是(D)①CA平分∠BCD;②AC平分∠BAD;③DB⊥AC;④BE=DE.A.②B.①②C.②③④D.①②③④例4牧马人在A处放牧,现他准备将马群赶回B处的家中,但中途他必须让马到河边l饮水一次,他应该怎样选择饮水点P,才能使所走的路程PA+PB最短?为什么?解:作点B关于直线l的对称点B′,162 连接AB′交l于P点,则点P为饮水点.由对称性得PB=PB′.在l上任取一点P′,连结AP′.P′B,由三角形两边之和大于第三边,知AP′+P′B′>AB′,而AB′=PA+PB′,即AP′+P′B′>PA+PB.∴像上面这样选择的饮水点P才能使PA+PB最小.例5如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.解:因为AD平分∠BAC,DE⊥AB,DC⊥AC,所以CD=DE=5cm.又因为AD平分∠BAC,所以∠CAB=2∠CAD=2×32°=64°,所以∠B=90°-64°=26°.例6如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.解:因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE=35°,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°[教学说明]教师根据学生遇到的问题和出现的错误,有针对性地进行讲解和学法指导.同时教学中应通过恰当的方式让学生理解解题的依据.四、复习训练,巩固提高1.一犯罪分子正在沿两交叉公路间到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点,并说明理由.解:作∠MON的平分线OC,如图连接AB,作线段的垂直平分线与OC交于点P,则点P为抓捕点.理由:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上).线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.2.如图,已知AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm.求AE的长.解:因为△ABD、△BCE都是等腰三角形,所以AB=BD,BC=BE.又因为BD=CD-BC,所以AB=CD-BC=CD-BE=8cm-3cm=5cm,所以AE=AB-BE=2cm.3.如图1,在正方形网格上有一个△ABC.162 (1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.解:(1)如答图2所示.点拨:利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形△A′B′C′.(2)SΔABC=9.点拨:利用和差法.4.某地板厂要制作一批正方形形状的地板砖,为适应市场多样化需要,要求在地板砖上设计的图案能够把正方形四等分,请你帮助该厂设计等分图案.(至少六种)分法如图.[教学说明]这些问题比较有挑战性、趣味性,是为了让学生综合、灵活的运用知识解决问题,及时的反馈不仅仅检验了学生的掌握程度,而且易于发现学生的易错点,便于教师及时调整教学策略,对知识进行强调巩固.五、师生互动,课堂小结通过本节课的复习,你有什么收获?还存在什么疑惑?【课后作业】1.布置作业:教材“复习题”中第1、3、5、8、12题.2.完成同步练习册中本课时的练习.162 【教学后记】第六章变量之间的关系1用表格表示的变量间关系【教学目标】1.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.2.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.3.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.4.了解可以用列表表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力.【教学重点】借助表格,分清什么是变量,理解自变量、因变量以及因变量随自变量的变化情况.【教学难点】将具体问题抽象成数学问题,由数据进行推断,并能有条理地、清晰地阐述自己的观点,并能根据表格中的有关信息预测变化趋势.【教学过程】一、情景导入,初步认知我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中经常发生变化的事物.如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了……[教学说明]通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力.二、思考探究,获取新知1.实验操作:利用实验器材——小车、木板、秒表、调节高度的装置,让学生参与到“小车下滑的时间”的实验中,并一起完成表格.利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到的数据填入下表:162 根据上表回答下列问题:(1)支撑物高度为70cm时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10cm,t的变化情况相同吗?(4)估计当h=110cm时,t的值是多少.你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?[教学说明]通过数据感受具体的变化及其中的蕴含的规律;让学生参与到收集数据的试验过程中,亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.问题(4)是进行预测,对学生来说有一定难度,鼓励学生充分进行交流,培养他们从表格获取信息的能力.2.议一议∶我国从1949年到2009年的人口统计数据如下(精确到0.01亿):(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?(2)x和y哪个是自变量?哪个是因变量?(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?(4)你能根据此表格预测2019年时我国人口将会是多少吗?[归纳结论]在“小车下滑的时间”中,支撑物的高度h和小车下滑的时间t都在变化,它们都是变量.其中小车下滑的时间t随支撑物的高度h的变化而变化.支撑物的高度h是自变量,小车下滑的时间t是因变量.在这一变化过程中,小车下滑的距离(木板的长度)一直没有变化.像这种在变化过程中数值始终不变的量叫做常量.在人口变化中,我国人口总数y随时间x的变化而变化,x是变量,y是因变量.借助表格,我们可以表示因变量随自变量的变化而变化的情况.在表格里,通常把自变量放在上(或左)面,把因变量放在下(或右)面.[教学说明]通过两个例子,理解变量、自变量、因变量、常量这些概念,同时体会表格对于数据的整理和呈现起到的作用.对于解决日常生活中变化的事物很有帮助.三、运用新知,深化理解1.小明和他爸爸做了一个实验,小明由一幢245m高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:162 下列说法错误的是(A)A.苹果每秒下落的路程不变B.苹果每秒下落的路程越来越长C.苹果下落的速度越来越快D.可以推测,苹果下落7秒后到达地面2.2017年1-12月某地大米的平均价格如下表所示,其中自变量是月份,因变量是平均价格;当自变量等于9,10时,因变量的值2.8最小.3.下表是小华做观察水的沸腾实验时所记录的数据:(1)时间是8分钟时,水的温度为100℃;(2)此表反映了变量温度和时间之间的关系,其中时间是自变量,温度是因变量;(3)在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.4.下表给出了橘农王林去年橘子的销售额(元)随橘子卖出质量(千克)的变化的有关数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?解:表中反映了橘子的卖出质量与销售额之间的关系,橘子的卖出质量是自变量,销售额是因变量;(2)当橘子卖出5千克时,销售额是多少?解:当橘子卖出5千克时,销售额为10元;(3)估计当橘子卖出50千克时,销售额是多少?解:当橘子卖出50千克时,销售额为100元.5.一次实验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值:(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?162 解:上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?解:因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm;当所挂物体重量为3g时,弹簧长24cm;(3)砝码质量每增加1g,弹簧的长度增加2cm.6.金融危机虽然给世界各国带来不小的冲击,但某公司励精图治,决定投资开发新项目,通过考察确定有6个项目可供选择,各项目所需资金及预计年利润如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?解:上表反映了所需资金和预计年利润之间的关系,所需资金是自变量,预计年利润率是因变量;(2)如果投资一个4亿元的项目,那么其年利润预计有多少?解:投资一个4亿元的项目,则其年利润预计有0.55千万元;(3)如果要预计获得0.9千万元的年利润,投资一个项目需要多少资金?解:预计获得0.9千万元的年利润,投资一个项目需要7亿资金;(4)如果该公司可以拿出10亿元进行多个项目的投资,可以有几种投资方案?哪种方案年利润最大?最大是多少?解:10亿元进行多个项目的投资,可以有一下几种投资方案:①项目1与项目2与项目5,②项目3与项目4,③项目2与项目6;∴最大收益是1.45(亿元).[教学说明]对本环节知识进行巩固练习.在教学中要让学生体会不同情境下的变量之间的关系,如一个量随着另一个量增加的,一个量随着另一个量减少的,一个量随着另一个量先增加后减少或先减少后增加的,等等,避免单一的情况.四、师生互动,课堂小结师生互相交流总结本节所学的知识,如何从表格中获取信息;如何用表格表示变量之间的关系;如何对变化趋势进行预测.五、教学板书【课后作业】1.布置作业:教材“习题3.1”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】162 2用关系式表示的变量间关系【教学目标】1.经历探索某些图形中变量之间关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.2.能用适当的函数表示方法刻画简单实际问题中变量之间的关系.3.经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.4.培养学生动手的能力,探索问题、研究问题的能力及应用数学知识的能力.通过教学让学生领悟探索问题和研究问题的方法.【教学重点】找问题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.【教学过程】一、情景导入,初步认知1.我们在以前学习过的面积和体积公式有哪些?2.刚才同学们例举出的这些公式它其实反映了面积或体积与几何图形的长、宽、高或半径等之间的关系,我们能不能用这种方式来表示变量之间的关系呢?3.今天我们一起来学习用关系式表示变量间的关系.[教学说明]本环节的设置是让学生复习以前学过的公式,因为在用关系式表示变量间的关系中,很多时候需要用到之前学习过的公式,比如这堂课中的三角形的面积公式,圆锥的体积公式等.同时,在以前学生学习字母表示什么这个课题的时候,也知道了用字母可以表示运算规律、公式等.公式本身也可以看做是一个关系式,因此在这里我用学生熟悉的公式来引入课题.二、思考探究,获取新知1.三角形是日常生活中很常见的图形,决定一个三角形面积的因素有哪些?2.如图所示,△ABC底边BC上的高是6cm.当三角形的顶点C沿底边所在直线向点C运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边长,因变量是三角形的面积.(2)如果三角形的底边长为x(cm),那么三角形的面积y(cm2)可以表示为y=3x.(3)当底边长从12cm变化到3cm时,三角形的面积从36cm2变化到9cm2.(4)y=3x表示了三角形面积和底边长之间的关系,它是变量y随x变化的关系式.利用此关系式,我们可以根据任何一个自变量值求出相应的因变量的值.3.同学们能根据要求填写下列的表格吗?162 通过填表、探究,同学们能说出用关系式表达变量间变化关系的优势在哪些方面吗?4.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥体积也随之而发生了变化.(1)在这个变化过程中,自变量是底面半径,因变量是圆锥体积.(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r的关系式是V=4/3πr2.(3)当底面半径由1cm变化到10cm时,圆锥的体积由4/3πcm3变化到400/3πcm3.5.议一议:你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳、特别是二氧化碳的排放量的一种方式.(1)家居用电的二氧化碳排放量可以用关系式表示为0.785a,其中的字母表示耗电量.(2)在上述关系式中,耗电量每增加1kW·h,二氧化碳排放量增加0.785kg.162 当耗电量从1kW·h增加到100kW·h时,二氧化碳排放量从0.785kg增加到78.5kg.(3)小明家本月用电大约110kW·h、天然气20m3、自来水5t、油耗75L,请你计算一下小明家这几项的二氧化碳排放量.[教学说明]本环节的设计主要让学生在具体的情境中学会用关系式来表示变量间的关系,体会关系式能够直接的看出变量之间的数量关系这一特点,通过求值运算,体会关系式能够方便的根据其中一个变量精准的求出另一个变量.三、运用新知,深化理解1.已知变量x,y满足下面的关系则x,y之间用关系式表示为(C)2.长方形的周长为24厘米,其中一边为x(其中x>0),面积为y平方厘米,则这样的长方形中y与x的关系可以写为(C)A.y=x2B.y=(12-x)2C.y=(12-x)·xD.y=2(12-x)3.如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是(D)A.y=12xB.y=18xC.y=2/3xD.y=3/2x4.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为y=100+0.2x(不考虑利息税).5.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为y=40-5x,该汽车最多可行驶8小时.6.地面温度为15℃,如果高度每升高1千米,气温下降6℃,则高度h(千米)与气温t(℃)之间的关系式为h=15-6t.7.某校办工厂现在年产值是15万元,计划以后每年增加2万元.(1)写出年产值y(万元)与年数x之间的关系式.(2)求5年后的年产值.解:(1)y=15+2x;(2)25.8.某移动通信公司开设了两种通信业务,“甲种套餐”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“乙种套餐”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?解:(1)y1=50+0.4x,y2=0.6x;(2)由y1=y2,即50+0.4x=0.6x,解得x=250,当每个月通话250分钟时,两种移动通讯费用相同;(3)当x=300时,y1=170,y2=180,y1<y2,所以使用“甲种套餐”合算.[教学说明]巩固用关系式表示变量间的关系,并感受表格与关系式这两种方法表示变量间关系的特征.162 四、师生互动,课堂小结这节课你们自我感觉学得怎么样?你们有哪些收获?哪个组合作最好?哪些小组成员表现最积极?五、教学板书【课后作业】1.布置作业:教材“习题3.2”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】3用图象表示的变量间关系第1课时曲线型图像【教学目标】1.能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息.2.培养学生的观察能力,预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力.3.让学生体会数学与实际生活的紧密联系,激发学生学习数学的兴趣,培养学生的数学应用意识.【教学重点】结合具体情境,理解图象上的点所表示的意义.并能从图象中获取变量间关系的信息.【教学难点】能从图象中获取变量之间关系的信息,并能用语言进行描述.【教学过程】一、情景导入,初步认知通过前面的学习,我们知道,可以用表格或关系式表示变量间的关系,同时掌握了根据自变量的取值求出相应因变量的方法.请你根据前面的知识解决下列问题.1.给定自变量x与因变量的y的关系式y=2x2-4x+8,填表:2.假设圆柱的高是5cm,当圆柱的底面半径由小到大变化时:162 (1)圆柱的体积如何变化?在这个变化中,自变量.因变量是什么?(2)如果圆柱底面半径为r(cm),圆柱的体积V可以表示为V=5πr2.(3)当r由1cm变化到10cm时,V由5πcm3变化到500πcm3.[教学说明]对上节课内容进行复习巩固,为本节课的教学做铺垫.二、思考探究,获取新知1.某地某天的温度变化情况如图所示,观察后回答下列问题:(1)上午9时的温度是27℃;12时的温度是31℃.(2)这一天15时的温度最高,最高温度是37℃;这一天3时的温度最低,最低温度是23℃.(3)这一天的温差是14℃,从最高温度到最低温度经过了12小时,(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.[归纳结论]上图表示了温度随时间的变化而变化的情况,它是温度与时间之间关系的图象.图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.[教学说明]让学生去体会温度这个变量和时间这个变量的关系,通过一系列的问题去体会到用图象表示变量之间的关系清晰明了.丰富学生的课外知识,激发学生学习的兴趣,为本节课的讲解做好铺垫.2.合作探究:你了解它吗—“沙漠之舟”.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?(2)从16时到24时,骆驼的体温下降了多少?(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?162 (4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?(6)你还知道那些关于骆驼的趣事?与同伴进行交流.[教学说明]可以让学生进一步巩固变量之间的关系,会利用图象解决实际问题.并清楚图象上的点所表示的内容.三、运用新知,深化理解1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是(B)A.沙漠B.体温C.时间D.骆驼2.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断下列说法错误的是:(D)A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢3.某种动物的体温随时间的变化图如图示:(1)一天之内,该动物体温的变化范围是多少?解:34℃至40℃(2)一天内,它的最低和最高体温分别是多少?是几时达到的.解:最低体温是34℃,是4时和28时达到的;最高体温是40℃,是16时达到的.(3)一天内,它的体温在哪段时间内下降.解:0时至4时,16时至28时体温在下降.(4)依据图象,预计第二天8时它的体温是多少?解:36℃4.某市一天的温度变化如图所示,看图回答下列问题:(1)这一天中什么时间温度最高?是多少度?什么时间温度最低?是多少度?解:这一天中15时温度最高,是24度;6时温度最低,是4度.(2)在这一天中,从什么时间到什么时间温度开始上升?在这一天中,从什么时间到什么时间温度开始下降?解:6时至15时,温度开始上升;0时至6时和15时至24时开始下降.162 5.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)y=1.6x;(2)50千克;(3)36元[教学说明]对本节课所学的内容加以巩固,对利用图象表示变量之间的关系加深理解.培养学生思考问题的全面性,提高学生的分析能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题3.3”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时折线型图像【教学目标】1.通过速度随时间变化的实际情境,进一步经历从图象中分析变量之间关系的过程,加深对图象表示的理解.2.给出实际情境,能大致描绘出它的关系图.3.进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力.4.用变化的观点去观察和解释身边发生的数学现象.5.发展学生应用数学的意识.【教学重点】进一步通过图象获取信息,分析变量之间的关系.【教学难点】由图象描述变量关系和由实际情境描述大致图象.【教学过程】一、情景导入,初步认知162 1.前几节课我们已经学习了表示变量之间关系的方法,有哪几种,每一种方法如何找自变量和因变量?哪位同学来说一下?2.某出租车每小时行驶60千米,若t小时行驶s千米,则自变量是行驶时间,因变量是行驶路程,s与t的关系式是s=60t.用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的.这节课我们继续来研究图象法表示速度的变化情况.[教学说明]通过复习表示变量的三种方法,体会学习过的三种表示变量之间关系的方法之间的联系,培养学生善于总结规律,善于观察并进行比较的能力,使学生明确每一种方法的优点,为本节课做铺垫.二、思考探究,获取新知1.同学们知道这幅图画的是什么吗?2.同学们都很聪明.每辆汽车上都有一个时速表用来指示汽车当时的速度,你会看这个表吗?3.你从家骑自行车到学校走同一条路的话,在这个过程中什么是常量什么是变量?4.速度和时间的关系我们可以用上节课学的图象法表示.下面是小明同学骑车的速度与行驶时间的关系用图象表示,下面的三个图象请分别用一句话描述.5.看图象的横轴合纵轴分别表示什么?6.怎样看图?图中上升、下降、水平部分分别是什么含义?[归纳结论]上升的线:从左至右呈上升状的线(代表速度增加);水平的线:与水平方向平行的线(代表匀速或静止);下滑的线:从左至右呈下降状的线(代表速度下降).[教学说明]从学生的亲身体验出发,很自然的引入新课,并对所学知识点理解深刻,记忆牢固.7.汽车在行驶的过程中,速度往往是变化的,下面的图象表示一辆汽车的速度随时间变化而变化的情况.162 (1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.各小组讨论相互补充,派代表回答问题,并解说从统计图中获取的信息及此统计图对于现实生活的实际意义.[教学说明]培养学生从图象中获取大量信息的读图能力,并通过亲身体验归纳总结图象表示法的特点及在现实生活中的实际意义.三、运用新知,深化理解1.伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是(A)2.星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是(B)A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回3.下列各情境分别可以用哪幅图来近似地刻画?162 (1)一杯越晾越凉的水(水温与时间的关系)(C)(2)把汽油用均匀速度注入油箱内(油量与时间的关系)(D)(3)跳高运动员跳越横杆(高度与时间的关系)(A)(4)匀速行驶的汽车(速度与时间的关系)(B)4.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下面可以近似地刻画出汽车在这段时间内的速度变化情况的是(B)5.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系(D)6.甲、乙两地相距80千米,A骑自行车,B骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y(千米)与时间x(时)的关系如图所示,请你根据图象回答或解决下面的问题:(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的路程y(千米)与时间x(小时)的关系.解:(1)A出发较早,早3小时,B到达乙地较早,早3小时.(2)两人在途中行驶的速度分别是10千米/时,40千米/时.(3)自行车:y=10x;摩托车:y=40(x-3).162 [教学说明]对本节重点内容进行现场检测,及时了解教学目标的达成情况.四、师生互动,课堂小结通过本节课的学习你有哪些收获?本节课从图象中分析了两个变量之间的关系,结合温度变化直观而形象地从图中获得了变量之间的有关信息,用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的.五、教学板书【课后作业】1.布置作业:教材“习题3.4”中第3、4题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.回顾总结表示变量之间的方法,学会用变量之间关系的各种形式分析变量之间的关系,并作出预测.2.从常量的世界走入变量的世界,开始接触一种新的思维方式——用运动变化的观点去认识数学对象,发展符号感和抽象思维.发展有条理的思考和培养较强的表达能力.3.能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的快乐,发展对数学更高层次的认识.【教学重点】能从表格、图象中分析变量之间的关系,发展有条理地进行思考和表达的能力.【教学难点】运用表示变量之间关系的方法分析变量之间的关系,分析问题、解决问题,进行预测.【教学过程】一、知识结构[教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.变量:在某一变化过程中,不断变化的量叫做变量.2.自变量,因变量:162 如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量.3.自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量.(3)利用具体情境来体会两者的依存关系.4.变量的表达方法:(1)表格(ⅰ)表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系.需注意以下几点:①首先要明确表格中所列的是哪两个量;②分清哪一个量为自变量,哪一个量为因变量;③结合实际情境理解它们之间的关系.(ⅱ)绘制表格表示两个变量之间关系.绘制表格时需注意以下几点:①列表时首先要确定各行各列的栏目;②一般有两行,第一行表示自变量,第二行表示因变量;③写出栏目名称,有时还根据问题内容写上单位;④在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.⑤一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系.(2)关系式用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式.关系式的写法不同于方程,必须将因变量单独写在等号的左边.(3)图象①图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象.②图象能清楚地反映出因变量随自变量变化而变化的情况.③用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量.5.图象理解:①理解图象上某一个点的意义,一定要看横轴、纵轴分别表示哪个变量;②看该点所对应的横轴、纵轴的位置(数据);③从图象上还可以得到随着自变量的变化,因变量的变化趋势.[教学说明]复习本章所涉及的相关知识点,使学生了解他们之间的关系.三、典例精析,复习新知例1下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对例2一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s(千米)和行驶时间t(小时)的关系的是(B)162 例3星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理店修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的图象.解:图象略例4将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.解:(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.例5甲骑自行车,乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示.根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)解:(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、复习训练,巩固提高1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:162 则m与v之间的关系最接近于下列各关系式中的(B)A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+12.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是(D)3.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是(C)A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时4.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?解:(1)8点;(2)9点;13千米;(3)乙;(4)10点;(5)答案不唯一,略.162 5.小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?解:(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)24厘米;18厘米;(3)32厘米.6.某公司有2位股东,20名工人.从2015年至2017年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?解:(1)工人的平均工资:2016年6250元,2017年7500元.股东的平均利润:2016年37500元,2017年50000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以(5000+1250x)×8=25000+12500x.解得x=6.所以到2021年每位股东年平均利润是每位工人年平均工资的8倍.五、师生互动,课堂小结通过本节课的复习,你有哪些收获?还存在哪些疑惑?【课后作业】1.布置作业:教材“复习题”中第6、7、10、12题.162 2.完成同步练习册中本课时的练习.【教学后记】162

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2025-01-17 19:42:02 页数:163
价格:¥12 大小:9.54 MB
文章作者:鹿哥教育

推荐特供

MORE