北师版八年级数学上册期末复习(易错题60题29个考点)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
期末复习(易错题60题29个考点)一.平方根(共1小题)1.的平方根是( )A.±3B.3C.±9D.9二.算术平方根(共1小题)2.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?三.立方根(共1小题)3.已知:2x+y+17的立方根是3,16的算术平方根是2x﹣y+2,求:(1)x、y的值;(2)x2+y2的平方根.四.估算无理数的大小(共2小题)4.若5+的小数部分是a,5﹣的小数部分是b,则ab+5b= .5.若两个连续整数x、y满足x<+1<y,则x+y的值是 .五.二次根式有意义的条件(共1小题)6.若,则代数式xy的值为( )A.4B.C.﹣4D.六.二次根式的性质与化简(共3小题)7.若2<a<3,则等于( )A.5﹣2aB.1﹣2aC.2a﹣5D.2a﹣18.当a<0时,化简的结果是( )A.B.C.D.9.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:56,==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.七.二元一次方程的解(共1小题)10.若是方程3x+y=1的一个解,则9a+3b+4= .八.解二元一次方程(共1小题)11.二元一次方程x+3y=10的非负整数解共有( )对.A.1B.2C.3D.4九.二元一次方程组的解(共2小题)12.已知方程组:的解是:,则方程组:的解是( )A.B.C.D.13.已知方程组与有相同的解,则m+n= .一十.由实际问题抽象出二元一次方程组(共1小题)14.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为( )A.B.C.D.一十一.点的坐标(共3小题)15.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为( )A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)56,16.已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q的坐标是( )A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)17.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 .一十二.坐标确定位置(共2小题)18.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是( )A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)19.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是 .一十三.坐标与图形性质(共2小题)20.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )A.(4,2)或(﹣4,2)B.(4,﹣2)或(﹣4,﹣2)56,C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)21.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.一十四.函数的概念(共1小题)22.下列各曲线中不能表示y是x的函数是( )A.B.C.D.一十五.函数自变量的取值范围(共1小题)23.函数y=中,自变量x的取值范围是( )A.x≥1B.x>1C.x≥1且x≠2D.x≠2一十六.函数的图象(共3小题)24.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A.B.C.D.56,25.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲乙两人间距离为s(单位:千米),甲行驶的时间为(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②乙开车速度是80千米/小时;③出发1.5小时时,乙比甲多行驶了60千米;④出发3小时时,甲乙同时到达终点;其中正确结论的个数是( )A.1B.2C.3D.426.匀速地向一个容器注水,最后把容器注满.在注水的过程中,水面高度h随时间t的变化规律如图所示(图中OEFG为一折线),那么这个容器的形状可能是下列图中的( )A.B.C.D.一十七.一次函数的定义(共1小题)27.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数一十八.一次函数的图象(共2小题)28.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是( )56,A.B.C.D.29.函数y1=|x|,.当y1>y2时,x的范围是( )A.x<﹣1B.﹣1<x<2C.x<﹣1或x>2D.x>2一十九.一次函数图象上点的坐标特征(共1小题)30.如图,已知a,b,c分别是Rt△ABC的三条边长,∠C=90°,我们把关于x的形如y=的一次函数称为“勾股一次函数”,若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是5,则c的值是 .二十.一次函数图象与几何变换(共1小题)31.已知直线l:y=﹣x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为( )A.B.y=2x﹣1C.D.y=2x﹣4二十一.一次函数与二元一次方程(组)(共1小题)32.如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是 .二十二.一次函数的应用(共3小题)56,33.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.34.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.56,35.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为 米/分钟;F点的坐标为 ;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.二十三.一次函数综合题(共2小题)36.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.56,37.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴交于点A,与y轴交于点B,将线段AB绕点A顺时针旋转90°,得到线段AC,过点B,C作直线,交x轴于点D.(1)点C的坐标为 ;求直线BC的表达式;(2)若点E为线段BC上一点,且△ABE的面积为,求点E的坐标;(3)在(2)的条件下,在平面内是否存在点P,使以点A,B,E,P为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.二十四.平行线的性质(共13小题)38.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°、138°B.都是10°C.42°、138°或10°、10°D.以上都不对39.如图,AB∥CD,有图中α,β,γ三角之间的关系是( )A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°40.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是( )A.28°B.34°C.46°D.56°56,41.两个角的两边分别平行,其中一个角是60°,则另一个角是( )A.60°B.120°C.60°或120°D.无法确定42.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为( )A.170°B.160°C.150°D.140°43.如图1的长方形纸带中∠DEF=25°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是( )A.105°B.120°C.130°D.145°44.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG= .45.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为 .46.如图,AB∥CD,P2E平分∠P1EB,P2F平分∠P1FD,若设∠P1EB=x°,∠P1FD=y°则∠P1= 度(用x,y的代数式表示),若P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3,P4E平分∠P3EB,P4F平分∠P3FD,可得∠P4…,依次平分下去,则∠Pn= 度.56,47.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是 .48.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.49.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.56,50.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.二十五.三角形内角和定理(共2小题)51.如图所示,将△ABC沿着DE折叠,使点A与点N重合,若∠A=65°,则∠1+∠2=( )A.25°B.65°C.115°D.130°52.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以An为顶点的底角的度数为 .56,二十六.三角形的外角性质(共3小题)53.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( )A.15°B.20°C.25°D.30°54.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P= °.55.在锐角△ABC中,点D是∠ABC、∠ACB的平分线的交点.(1)如图1,点E是△ABC外角∠MBC、∠NCB的三等分线的交点,且∠EBC=∠MBC,∠ECB=∠NCB,若∠BAC=60°,则∠BDC= °,∠BEC= °;(2)如图2,锐角△ABC的外角∠ACG的平分线与BD的延长线交于点F,在△DCF中,如果有一个角是另一个角的4倍,试求出∠BAC的度数.56,二十七.勾股定理(共3小题)56.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是( )A.18cm2B.36cm2C.72cm2D.108cm257.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为( )A.84B.24C.24或84D.42或8458.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此继续,得OP2018= ,OPn= (n为自然数,且n>0)二十八.勾股数(共1小题)59.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为 .56,二十九.方差(共1小题)60.若一组数据x1+1,x2+1,x3+1…xn+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,xn+2的平均数和方差分别是( )A.18,2B.19,3C.19,2D.20,456,期末复习(易错题60题29个考点)一.平方根(共1小题)1.的平方根是( )A.±3B.3C.±9D.9【答案】A【解答】解:∵,9的平方根是±3,故选:A.二.算术平方根(共1小题)2.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【答案】见试题解答内容【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.三.立方根(共1小题)3.已知:2x+y+17的立方根是3,16的算术平方根是2x﹣y+2,求:(1)x、y的值;(2)x2+y2的平方根.【答案】见试题解答内容【解答】解:(1)依题意,解得:;(2)x2+y2=9+16=25,25的平方根是±5.即x2+y2的平方根是±5.四.估算无理数的大小(共2小题)56,4.若5+的小数部分是a,5﹣的小数部分是b,则ab+5b= 2 .【答案】见试题解答内容【解答】解:∵2<<3,∴2+5<5+<3+5,﹣2>﹣>﹣3,∴7<5+<8,5﹣2>5﹣>5﹣3,∴2<5﹣<3∴a=﹣2,b=3﹣;将a、b的值,代入可得ab+5b=2.故答案为:2.5.若两个连续整数x、y满足x<+1<y,则x+y的值是 7 .【答案】见试题解答内容【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.五.二次根式有意义的条件(共1小题)6.若,则代数式xy的值为( )A.4B.C.﹣4D.【答案】A【解答】解:根据题意,得,解得x=,∴y=﹣2;∴xy==4.故选:A.六.二次根式的性质与化简(共3小题)56,7.若2<a<3,则等于( )A.5﹣2aB.1﹣2aC.2a﹣5D.2a﹣1【答案】C【解答】解:∵2<a<3,∴=a﹣2﹣(3﹣a)=a﹣2﹣3+a=2a﹣5.故选:C.8.当a<0时,化简的结果是( )A.B.C.D.【答案】A【解答】解:根据a<0,∴===,故选:A.9.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.56,【答案】见试题解答内容【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.七.二元一次方程的解(共1小题)10.若是方程3x+y=1的一个解,则9a+3b+4= 7 .【答案】见试题解答内容【解答】解:把代入方程3x+y=1,得3a+b=1,所以9a+3b+4=3(3a+b)+4=3×1+4=7,即9a+3b+4的值为7.八.解二元一次方程(共1小题)11.二元一次方程x+3y=10的非负整数解共有( )对.A.1B.2C.3D.4【答案】D【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.九.二元一次方程组的解(共2小题)12.已知方程组:的解是:,则方程组:的解是( )A.B.56,C.D.【答案】C【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即.故选:C.13.已知方程组与有相同的解,则m+n= 3 .【答案】见试题解答内容【解答】解:∵与有相同的解,∴解方程组得,∴解m、n的方程组得∴m+n=4﹣1=3.故答案为:3.一十.由实际问题抽象出二元一次方程组(共1小题)14.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为( )A.B.C.D.【答案】A【解答】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.一十一.点的坐标(共3小题)15.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为( )56,A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)【答案】A【解答】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A.16.已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q的坐标是( )A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)【答案】D【解答】解:∵点Q(﹣2+a,2a﹣7)到两坐标轴的距离相等,∴|﹣2+a|=|2a﹣7|,∴﹣2+a=2a﹣7或﹣2+a=﹣(2a﹣7),解得a=5或a=3,所以,点Q的坐标为(3,3)或(1,﹣1).故选:D.17.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 (503,﹣503) .【答案】见试题解答内容【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2010÷4=502…2;∴A2010的坐标在第四象限,56,横坐标为(2010﹣2)÷4+1=503;纵坐标为﹣503,∴点A2010的坐标是(503,﹣503).故答案为:(503,﹣503).一十二.坐标确定位置(共2小题)18.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是( )A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)【答案】C【解答】解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选:C.19.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是 23 .【答案】见试题解答内容【解答】解:从图中可以发观,第n排的最后的数为:n(n+1)∵第6排最后的数为:×6(6+1)=21,56,∴(7,2)表示第7排第2个数,则第7排第二个数为21+2=23.故答案填:23.一十三.坐标与图形性质(共2小题)20.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )A.(4,2)或(﹣4,2)B.(4,﹣2)或(﹣4,﹣2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】B【解答】解:∵M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,∴M′的纵坐标y=﹣2,∵“M′到y轴的距离等于4”,∴M′的横坐标为4或﹣4.所以点M′的坐标为(4,﹣2)或(﹣4,﹣2),故选:B.21.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.【答案】见试题解答内容【解答】解:(1)∵C(﹣1,﹣3),∴|﹣3|=3,∴点C到x轴的距离为3;(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)56,∴AB=4﹣(﹣2)=6,点C到边AB的距离为:3﹣(﹣3)=6,∴△ABC的面积为:6×6÷2=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(﹣2,3)、B(4,3),∴6×|y﹣3|=6,∴|y﹣3|=2,∴y=1或y=5,∴P点的坐标为(0,1)或(0,5).一十四.函数的概念(共1小题)22.下列各曲线中不能表示y是x的函数是( )A.B.C.D.【答案】C【解答】解:A、B、D选项中,对于一定范围内自变量x的任何值,y都有唯一的值与之相对应,所以y是x的函数;C选项中,对于一定范围内x取值时,y可能有2个值与之相对应,所以y不是x的函数;故选:C.一十五.函数自变量的取值范围(共1小题)23.函数y=中,自变量x的取值范围是( )A.x≥1B.x>1C.x≥1且x≠2D.x≠2【答案】C【解答】解:依题意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.56,故选:C.一十六.函数的图象(共3小题)24.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A.B.C.D.【答案】C【解答】解:A.此函数图象中,S2先达到最大值,即兔子先到终点,不符合题意;B.此函数图象中,S2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;C.此函数图象中,乌龟和兔子同时到达终点,符合题意;D.此函数图象中,S1先达到最大值,即乌龟先到终点,不符合题意.故选:C.25.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲乙两人间距离为s(单位:千米),甲行驶的时间为(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②乙开车速度是80千米/小时;③出发1.5小时时,乙比甲多行驶了60千米;④出发3小时时,甲乙同时到达终点;其中正确结论的个数是( )56,A.1B.2C.3D.4【答案】C【解答】解:由图象可得,当t=1时,s=0,即出发1小时时,甲乙在途中相遇,故①正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,故②正确;出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故③正确;在1.5小时时,乙到达终点,甲在3小时时到达终点,故④错误,故选:C.26.匀速地向一个容器注水,最后把容器注满.在注水的过程中,水面高度h随时间t的变化规律如图所示(图中OEFG为一折线),那么这个容器的形状可能是下列图中的( )A.B.C.D.【答案】B【解答】解:从图中可以看出,OE上升最快,EF上升较慢,FG上升较快,所以容器的底部容积最小,中间容积最大,上面容积较大,故选:B.一十七.一次函数的定义(共1小题)27.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【答案】A56,【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.一十八.一次函数的图象(共2小题)28.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是( )A.B.C.D.【答案】C【解答】解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:C.29.函数y1=|x|,.当y1>y2时,x的范围是( )56,A.x<﹣1B.﹣1<x<2C.x<﹣1或x>2D.x>2【答案】C【解答】解:由图象可知:在(﹣1,1)左边,(2,2)的右边,y1>y2,∴x<﹣1或x>2.故选:C.一十九.一次函数图象上点的坐标特征(共1小题)30.如图,已知a,b,c分别是Rt△ABC的三条边长,∠C=90°,我们把关于x的形如y=的一次函数称为“勾股一次函数”,若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是5,则c的值是 5 .【答案】见试题解答内容【解答】解:∵点P(1,)在“勾股一次函数”y=的图象上,∴,即a+b=,又∵a,b,c分别是Rt△ABC的三条边长,∠C=90°,Rt△ABC的面积是5,∴ab=5,即ab=10,又∵a2+b2=c2,∴(a+b)2﹣2ab=c2,即∴()2﹣2×10=c2,解得c=5,故答案为:5.56,二十.一次函数图象与几何变换(共1小题)31.已知直线l:y=﹣x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为( )A.B.y=2x﹣1C.D.y=2x﹣4【答案】D【解答】解:设直线l'的解析式为y=kx+b,∵直线l'⊥直线l,∴﹣×k=﹣1,即k=2,在直线l:y=﹣x+1中,令y=0,则x=2,∴P(2,0),代入y=2x+b,可得0=4+b,解得b=﹣4,∴直线l'的解析式为y=2x﹣4,故选:D.二十一.一次函数与二元一次方程(组)(共1小题)32.如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是 .【答案】见试题解答内容【解答】解:∵由图象可知:函数y=x﹣2和y=﹣2x+1的图象的交点P的坐标是(1,﹣1),又∵由y=x﹣2,移项后得出x﹣y=2,由y=﹣2x+1,移项后得出2x+y=1,56,∴方程组的解是,故答案为:.二十二.一次函数的应用(共3小题)33.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】见试题解答内容【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,56,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.34.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【答案】见试题解答内容【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,56,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.35.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为 240 米/分钟;F点的坐标为 (25,0). ;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.【答案】见试题解答内容【解答】解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;56,(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=﹣96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=﹣96t+2400;(4)根据题意得,240(t﹣2)﹣96t=2400,解得t=20.答:李越与王明第二次相遇时t的值为20.二十三.一次函数综合题(共2小题)36.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,56,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,即0≤t≤12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.56,37.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴交于点A,与y轴交于点B,将线段AB绕点A顺时针旋转90°,得到线段AC,过点B,C作直线,交x轴于点D.(1)点C的坐标为 (4,1) ;求直线BC的表达式;(2)若点E为线段BC上一点,且△ABE的面积为,求点E的坐标;(3)在(2)的条件下,在平面内是否存在点P,使以点A,B,E,P为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.56,【答案】(1)(4,1),y=﹣x+3;(2)E(2,2);(3)点P的坐标为(3,﹣1)或(﹣1,1)或(1,5).【解答】解:(1)直线y=﹣3x+3中,当x=0时,y=3,∴B(0,3),OB=3,当y=0时,﹣3x+3=0,∴x=1,∴A(1,0),OA=1,如图1,过点C作CG⊥x轴于G,由旋转得:AB=AC,∠BAC=90°,∴∠BAO+∠CAG=90°,∵∠AOB=∠CGA=∠BAO+∠ABO=90°,∴∠CAG=∠ABO,∴△BOA≌△AGC(AAS),∴AG=OB=3,CG=OA=1,∴C(4,1),设直线BC的解析式为:y=kx+b,56,则,解得:,∴直线BC的解析式为:y=﹣x+3;故答案为:(4,1);(2)如图2,过点E作EF⊥y轴于F,∵点E为线段BC上一点,∴设点E的坐标为(m,﹣m+3)(0≤m≤4),∵四边形AOBE的面积=S△AOB+S△ABE=S△BEF+S梯形AOFE,∴×1×3+=•m•(3+m﹣3)+•(1+m)•(﹣m+3),解得:m=2,∴E(2,2);(3)分三种情况:①如图3,四边形ABEP是平行四边形,∵A(1,0),B(0,3),E(2,2),∴由平移得:P(3,﹣1);56,②如图4,四边形APBE是平行四边形,由平移得:P(﹣1,1);③如图5,四边形ABPE是平行四边形,由平移得:P(1,5);综上,点P的坐标为(3,﹣1)或(﹣1,1)或(1,5).二十四.平行线的性质(共13小题)38.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°、138°B.都是10°C.42°、138°或10°、10°D.以上都不对【答案】C【解答】解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,56,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.故选:C.39.如图,AB∥CD,有图中α,β,γ三角之间的关系是( )A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°【答案】C【解答】解:如图,延长AE交直线CD于F,56,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.40.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是( )A.28°B.34°C.46°D.56°【答案】B【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE﹣∠CFE=121°﹣87°=34°,故选:B.41.两个角的两边分别平行,其中一个角是60°,则另一个角是( )A.60°B.120°C.60°或120°D.无法确定【答案】C【解答】解:如图(1),∵AB∥DE,∴∠A=∠1=60°,56,∵AC∥EF,∴∠E=∠1,∴∠A=∠E=60°.如图(2),∵AC∥EF,∴∠A=∠1=60°,∵DE∥AB,∴∠E+∠1=180°,∴∠A+∠E=180°,∴∠E=180°﹣∠A=180°﹣60°=120°.故一个角是60°,则另一个角是60°或120°.故选:C.42.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为( )A.170°B.160°C.150°D.140°【答案】B【解答】解:如图,过点B作BD∥AE,由已知可得:AE∥CF,∴AE∥BD∥CF,∴∠ABD=∠A=130°,∠DBC+∠C=180°,∴∠DBC=∠ABC﹣∠ABD=150°﹣130°=20°,∴∠C=180°﹣∠DBC=180°﹣20°=160°.故选:B.56,43.如图1的长方形纸带中∠DEF=25°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是( )A.105°B.120°C.130°D.145°【答案】A【解答】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°﹣∠BFE=155°,∠BFC=∠EFC﹣∠BFE=130°,图3中,∠CFE=∠BFC﹣∠BFE=105°.故选:A.44.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG= 77° .【答案】见试题解答内容【解答】解:由折叠可得,∠BGF=∠BGE=(180°﹣26°)=77°,∵AD∥BC,∴∠DFG=∠BGF=77°,故答案为:77°.56,45.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为 75° .【答案】见试题解答内容【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠FAE+∠E=45°+30°=75°.故答案为:75°.46.如图,AB∥CD,P2E平分∠P1EB,P2F平分∠P1FD,若设∠P1EB=x°,∠P1FD=y°则∠P1= (x+y) 度(用x,y的代数式表示),若P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3,P4E平分∠P3EB,P4F平分∠P3FD,可得∠P4…,依次平分下去,则∠Pn= ()n﹣1(x+y) 度.【答案】(1)(x+y);(2)()n﹣1(x+y).【解答】解:(1)如图,分别过点P1、P2作直线MN∥AB,GH∥AB,∴∠P1EB=∠MP1E=x°.又∵AB∥CD,∴MN∥CD.∴∠P1FD=∠FP1M=y°.∴∠EP1F=∠EP1M+∠FP1M=x°+y°.(2)∵P2E平分∠BEP1,P2F平分∠DFP1,∴=..56,以此类推:,,...,.故答案为:(x+y),()n﹣1(x+y).47.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是 74° .【答案】见试题解答内容【解答】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°﹣37°=53°;∴在△DEF中,∠DEB=180°﹣2∠2=74°.故答案为:74°.48.问题情境:56,(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【答案】见试题解答内容【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;56,(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.49.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;56,(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.【答案】见试题解答内容【解答】解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣80°=100°,∴∠ABP+∠PBN=100°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=100°,∴∠CBD=∠CBP+∠DBP=50°;(2)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(3)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=100°,∠CBD=50°,∴∠ABC+∠DBN=50°,56,∴∠ABC=25°.50.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.【答案】见试题解答内容【解答】解:(1)如图1,过B作BG∥CN,∴∠C=∠CBG∵AB⊥BC,∴∠CBG=90°﹣∠ABG,∴∠C=90°﹣∠ABG,∵BG∥CN,AM∥CN,∴AM∥BG,∴∠DBG=90°=∠D,∴∠ABD=90°﹣∠ABG,∴∠ABD=∠C;(2)①如图2,设∠DBE=∠EBA=x,则∠BCN=2x,∠FCB=5x,设∠ABF=y,则∠BFC=1.5y,∵BF平分∠DBC,∴∠FBC=∠DBF=2x+y,56,∵∠AFB+∠BCN=∠FBC,∴∠AFB+2x=2x+y,∴∠AFB=y=∠ABF;②∵∠CBA=90°,AF∥CN,∴∠ABG+∠CBG=90°,∠BCN+∠AFB+∠BFC+∠BCF=180°,∴,∴,∴∠CBE=3x+2y=3×15°+2×30°=105°.二十五.三角形内角和定理(共2小题)51.如图所示,将△ABC沿着DE折叠,使点A与点N重合,若∠A=65°,则∠1+∠2=( )A.25°B.65°C.115°D.130°【答案】D【解答】解:∵△NDE是△ADE翻折变换而成,∴∠AED=∠NED,∠ADE=∠NDE,∠A=∠N=65°,∴∠AED+∠ADE=∠NED+∠NDE=180°﹣65°=115°,∴∠1+∠2=360°﹣2×115°=130°.故选:D.52.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 17.5° 56,;第n个三角形中以An为顶点的底角的度数为 .【答案】见试题解答内容【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以An为顶点的底角的度数=.故答案为:17.5°,.二十六.三角形的外角性质(共3小题)53.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( )A.15°B.20°C.25°D.30°【答案】B【解答】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.56,设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.54.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P= 30 °.【答案】见试题解答内容【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.55.在锐角△ABC中,点D是∠ABC、∠ACB的平分线的交点.(1)如图1,点E是△ABC外角∠MBC、∠NCB的三等分线的交点,且∠EBC=∠MBC,∠ECB=∠NCB,若∠BAC=60°,则∠BDC= 120 °,∠BEC= 100 °;(2)如图2,锐角△ABC的外角∠ACG的平分线与BD的延长线交于点F,在△DCF中,如果有一个角是另一个角的4倍,试求出∠BAC的度数.56,【答案】见试题解答内容【解答】解:(1)∵∠BAC=60°,∴∠ABC+∠ACB=120°,又∵点D是∠ABC、∠ACB的平分线的交点,∴∠DBC=∠ABC,∠DCB=∠ACB,∴△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣60°=120°;∵∠EBC=∠MBC,∠ECB=∠NCB,∴∠EBC+∠ECB=(∠MBC+∠NCB)=(180°﹣∠ABC+180°﹣∠ACB)=(360°﹣120°)=80°,∴△BCE中,∠E=180°﹣(∠EBC+∠ECB)=180°﹣80°=100°;故答案为:120,100;(2)由(1)可得,∠BDC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,∴∠FDC=180°﹣(90°+∠A)=90°﹣∠A,∵∠FCG是△BCF的外角,∠ACG是△ABC的外角,∴∠F=∠FCG﹣∠FBC,∠A=∠ACG﹣∠ABC,又∵BF平分∠ABC,FC平分∠ACG,∴∠FBC=∠ABC,∠FCG=∠ACG,∴∠F=∠FCG﹣∠FBC=∠ACG﹣∠ABC=(∠ACG﹣∠ABC)=∠A,∵DC平分∠ACB,FC平分∠ACG,∴∠DCF=∠ACD+∠ACF=∠BCG=90°,56,在△DCF中,如果有一个角是另一个角的4倍,则①当∠FDC=4∠F时,90°﹣∠A=4×∠A,解得∠A=36°;②当∠F=4∠FDC时,∠A=4×(90°﹣∠A),解得∠A=144°(不合题意);③当∠DCF=4∠FDC时,90°=4×(90°﹣∠A),解得∠A=135°(不合题意);④当∠DCF=4∠F时,90°=4×∠A,解得∠A=45°;综上所述,锐角△ABC中∠BAC的度数为36°或45°.二十七.勾股定理(共3小题)56.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是( )A.18cm2B.36cm2C.72cm2D.108cm2【答案】D【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.56,即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.57.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为( )A.84B.24C.24或84D.42或84【答案】C【解答】解:(1)△ABC为锐角三角形,高AD在△ABC内部.BD==9,CD==5∴△ABC的面积为×(9+5)×12=84;(2)△ABC为钝角三角形,高AD在△ABC外部.方法同(1)可得到BD=9,CD=5∴△ABC的面积为×(9﹣5)×12=24.故选:C.58.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此继续,得OP2018= ,OPn= (n为自然数,且n>0)【答案】见试题解答内容【解答】解:由题意得,OP1=;56,OP2=;OP3=,…则OP2018=,OPn=,故答案为:;.二十八.勾股数(共1小题)59.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为 (11,60,61) .【答案】见试题解答内容【解答】解:由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61),故答案为:(11,60,61).二十九.方差(共1小题)60.若一组数据x1+1,x2+1,x3+1…xn+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,xn+2的平均数和方差分别是( )A.18,2B.19,3C.19,2D.20,4【答案】C【解答】解:∵数据x1+1,x2+1,x3+1…xn+1的平均数为18,∴数据x1+2,x2+2,x3+2……,xn+2的平均数为18+1=19;∵数据x1+1,x2+1,x3+1…xn+1的方差是2,56,∴数据x1+2,x2+2,x3+2……,xn+2的方差是2;故选:C.56
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)