初中数学新湘教版七年级上册第3章 一次方程(组)教案(2025秋)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第3章一次方程(组)3.1等量关系和方程【教学目标】1.理解一元一次方程及解的概念.2.建立实际问题的方程模型,运用方程分析和解决实际问题.3.通过学生观察、独立思考等过程,培养学生归纳、概括的能力.4.培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想.【教学重点】体会方程模型的重要性,了解一元一次方程的概念.【教学难点】正确理解方程作为实际问题的数学模型的作用.【教学过程】一、情景导入,初步认知在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们先来了解一下方程.[教学说明]引起学生的学习兴趣,激发学生的求知欲.二、思考探究,获取新知1.请你表示出下面两个问题中的等量关系.(1)如图,甲、乙两站的高速铁路长1068km,“和谐号”高速列车从甲站开出2.5h后,离乙站还有318km,该高速列车的平均速度是多少?(2)如图,这是一个长方体形的包装盒,长为1.2m,高为1m,表面积为6.8m2,这个包装盒的底面宽是多少?问题(1)的等量关系是:已行驶的路程+剩余的路程=全长.设高速列车的平均速度是xkm/h,我们可以用含x的式子表示上述等量关系,即2.5x+318=1068.问题(2)的等量关系是:底面积+侧面积=表面积.若设包装盒的底面宽是ym,则等量关系可表示为:1.2×y×2+y×1×2+1.2×1×2=6.8,即:2.4y+2y+2.4=6.8.[教学说明]引导学生分析问题,用文字表示题目中的等量关系式.再根据等量关系式列出式子.2.观察所列出的两个等式,它们有什么共同特征?[归纳结论]我们把含有未知数的等式叫做方程.像上面这样,把所要求的量用字母x(y……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程.3.思考:对于2.5x+318=1068,2.4y+2y+2.4=6.8方程,有几个未知数,每个未知数的次数是多少?[教学说明]组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.[归纳结论]只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程.33
4.方程的解.在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解.[归纳结论]能使方程左右两边的值相等的未知数的值叫做方程的解.[教学说明]了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解.三、运用新知,深化理解1.教材P84例1.2.下列方程中,是一元一次方程的是(B)A.x2-4x=3B.x=0C.x+2y=1D.x-1=3.下列方程中解是x=1的方程是(C)A.2x-2=3xB.x+5=2x-4C.3x-6=4x-7D.5x+2=4x-34.下列各数中是方程4x-5=7的解的是(B)A.1B.3C.-3D.45.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是(A)A.350×0.8-x=15B.350×8-x=15C.350×0.8=x-15D.350×8=x-156.以x=-3为解的方程是(D)A.3x-7=2B.5x-2=-xC.6x+8=-26D.x+7=4x+167.在下列方程中:①x+2y=3,②-3x=9,③=y+,④x=0,是一元一次方程的有③④(只填序号).8.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,则m=-2.9.若方程(m2-1)x2-mx+8=x是关于x的一元一次方程,求代数式2006m-∣m-1∣的值.解:由一元一次方程的定义可知:m2-1=0m=±1当m=1时,2006m-∣m-1∣=2006;当m=-1时,2006m-∣m-1∣=-2008.10.检验下面方程后面括号内所列各数是否为这个方程的解.2(x+2)-5(1-2x)=-13,{x=-1,1}解:将x=-1代入方程的两边得左边=2(-1+2)-5[1-2×(-1)]=-1333
右边=-13因为左边=右边,所以x=-1是方程的解.将x=1代入方程的两边得左边=2(1+2)-5(1-2×1)=11右边=-13因为左边≠右边,所以x=1不是方程的解.11.建立下列各问题中的方程模型.(1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了1.6元,你猜原来每本练习册的价格是多少元?”解:设原来每本练习册的价格为x元20(1-80%)x=1.6(2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树.那么刘伟植了多少棵树?解:设刘伟植了x棵,则可列方程x+15+x=75(3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍.问应该从乙队抽调多少人?解:设应该从乙队抽调x人.则可列方程32+x=2×(28-x)(4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?解:设原计划每小时生产x个零件,则所列方程为12(x+10)=13x+60[教学说明]对本节知识进行巩固练习.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.1”中选取.3.2等式的基本性质第1课时等式的基本性质【教学目标】1.理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题.2.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.3.让学生感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心.【教学重点】等式的性质和运用.【教学难点】引导学生发现并概括出等式的性质.【教学过程】一、情景导入,初步认知同学们,你们还记得“曹冲称象”的故事吗?请同学们说说这个故事.小时候的曹冲是多么的聪明啊!随着社会的进步,科学水平的发展,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.[教学说明]33
从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题.让学生从中体验学习与生活的紧密联系.二、思考探究,获取新知1.思考并回答下列问题.(1)如果:七年级(1)班的学生人数=七年级(2)班的学生人数.现在每班增加2名学生,那么七年级(1)班与七年级(2)班的学生人数相等吗?如果每班减少3名学生,那么这两个班的学生人数还相等吗?(2)如果:甲筐米的质量=乙筐米的质量现在将甲、乙两筐米分别倒出一半,那么甲、乙两筐剩下的米的质量相等吗?2.观察上面的实验操作过程,回答下列问题.(1)从这个变形过程,你发现了哪些一般规律?(2)这两个等式两边分别进行什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?[归纳结论]等式性质1:等式的两边都加上(或减去)同一个数或式子,所得结果仍是等式.等式性质2:等式两边都乘(或除以)同一个数或式子(除数不为0),所得结果仍是等式.即:如果a=b,那么a±c=b±c;ac=bc;=(d≠0).[教学说明]通过操作途径来发现等式的加减性质,将抽象的算式具体化,降低学生的认知难度,提高课堂效率.同时,通过操作活动更加吸引学生的注意力,调动学生参与课堂的积极性.三、运用新知,深化理解1.教材P88例1、例2.2.下列结论正确的是(B)A.若x+3=y-7,则x+7=y-11;B.若7y-6=5-2y,则7y+6=17-2y;C.若0.25x=-4,则x=-1;D.若7x=-7x,则7=-7.3.下列说法错误的是(C)A.若=,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6.4.已知等式ax=ay,下列变形不正确的是(A)A.x=yB.ax+1=ay+1C.ay=axD.3-ax=3-ay5.下列说法正确的是(D)A.等式两边都加上一个数或一个整式,所得结果仍是等式;B.等式两边都乘以一个数,所得结果仍是等式;C.等式两边都除以同一个数,所得结果仍是等式;D.一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式.6.判断:已知a=b,c=d(1)5a=5b()(2)c÷5=d÷15()(3)a-b=c-d()33
(4)a+5=c+5()答案:对、错、对、错.7.在方程的两边都加上4,可得方程x+4=5,那么原方程是x=1.8.在方程x-6=-2的两边都加上6,可得x=4.9.方程5+x=-2的两边都减5得x=-7.10.如果-7x=6,那么x=.11.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?解:设原计划x天完成.20x+100=32x-20[教学说明]通过及时的练习对所学新知进行巩固和深化.在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.2”中选取.第2课时移项【教学目标】1.能从实际问题中找出相等关系,并列一元一次方程,培养抽象能力.2.能利用移项、合并同类项解形如ax+c=bx+d的方程,强化运算能力.【教学重点】利用移项、合并同类项解形如ax+c=bx+d的方程.【教学难点】实际问题中找出相等关系,构建方程模型解决问题.【教学过程】一、回顾旧知,引入新知你能利用等式的性质解下列方程吗?(1)x=3x+2;(2)x-2=6-x;(3)0.5x+1=1.2x-4.显然解这些方程的第一步不是合并同类项,因为在这些方程中,同类项分别分布在等号的两边,不能直接合并,那么怎么才能进行合并同类项呢?下面我们就来开始今天的学习——移项.二、对比学习,探究新知把一批图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.这个班有多少名学生?问题1设这个班有x名学生.应如何列方程呢?每人分3本,共分出3x本,加上剩余的20本,这批书共(3x+20)本;每人分4本,需要4x本,减去缺的25本,这批书共(4x-25)本.这批书的总数是一个定值,表示它的两个式子应相等,根据这一相等关系列得方程3x+20=4x-25.问题2方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能把它转化为x=m(常数)的形式呢?请你用等式的性质试一试.为了使方程的右边没有含x的项,等式两边减4x,利用等式的性质1,得3x+20-4x=-25.为了使方程的左边没有常数项,等式两边减20,利用等式的性质1,得3x-4x=-25-20.问题3把方程3x-4x=-25-20与原方程作比较,请你用自己的语言描述其中的变化.33
问题4把某项从等式的一边移到另一边时,这项有什么变化?该项系数的符号变了.问题5请你继续解方程3x-4x=-25-20.合并同类项,得-x=-45.系数化为1,得x=45.由上可知,这个班有45名学生.思考上面解方程中“移项”起了什么作用?通过移项,含未知数的项与常数项分别位于方程左、右两边,使方程更接近于x=m(常数)的形式.【对应训练】教材的练习三、运用新知,巩固提升例1解下列方程:(1)3x+7=32-2x;(2)x-3=3/2x+1.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)移项,得x-3/2x=1+3.合并同类项,得-1/2x=4.系数化为1,得x=-8.例2某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比为2∶5,采用两种工艺的废水排量各是多少吨?分析提问:(1)说一说本题中什么量是一定的?根据题意你能得出怎样的相等关系?环保限制的最大废水排量是一定的.相等关系:旧工艺废水排量-200=新工艺废水排量+100.(2)由“新、旧工艺的废水排量之比为2∶5”,你认为可以如何设未知数?可设新工艺的废水排量为2xt,旧工艺的废水排量为5xt.根据前面的分析求出两种工艺下的废水排量.解:设采用新、旧工艺的废水排量分别为2xt和5xt.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:采用新、旧工艺的废水排量分别为200t和500t.【对应训练】教材的练习.四、随堂训练,课堂总结【作业布置】教材的习题3.2中选取.第2课时去括号和去分母【教学目标】1.掌握解一元一次方程中去括号和去分母的方法.2.通过学生观察、独立思考等过程,培养学生归纳、概括的能力.3.激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯.【教学重点】会用去括号和去分母.【教学难点】33
树立列方程解应用题的思想.【教学过程】一、情景导入,初步认知1.回顾上一节课学习的解一元一次方程的步骤.2.回顾分配律的内容及其字母表达式.[教学说明]为进一步学习做准备.二、思考探究,获取新知探究点一:去括号1.一艘轮船在A、B两个码头之间航行,顺水航行需4h,逆水航行需5h,已知水流速度为2km/h,求轮船在静水中航行速度.(1)你能根据题意,列出等量关系式吗?(2)怎样设未知数呢?(3)如何解这个方程呢?2.解方程:4(x+2)=5(x-2)思考,怎样去掉括号.利用乘法的分配律,去括号得4x+8=5x-10移项得4x-5x=-10-8合并同类项得-x=-18系数化为1,得x=183.根据上面的解方程的过程,你能总结解此类方程的步骤吗?[归纳结论]用“去括号”的方法解这一类方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.[教学说明]结合解方程的过程,让学生思考有关步骤的作用,让学生体会化归思想.探究点二:去分母1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?师生互动:学生审题后,教师提问:(1)题中涉及哪些相等关系?(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.(x+1)+(x+4)=1[教学说明]由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).[教学说明]学生在已有经验基础上,努力尝试新的方法.4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?[教学说明]通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:(1)怎样去分母呢?(2)去分母的依据是什么?[归纳结论]去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?33
[归纳结论]解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.[教学说明]学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.三、运用新知,深化理解2.在下列各方程中,解最小的方程是(B)A.-x+5=2xB.5(x-8)-8=7(2x-3)C.2x-1=5x-7D.4(x+4)=123.方程4(2-x)-4x=64的解是(D)A.7B.C.-D.-74.某同学买了1元邮票和2元邮票共12枚,花了20元钱,求该同学买的1元邮票和2元邮票各多少枚?在解决这个问题时,若设该同学买1元邮票x枚,求出下列方程,其中错误的是(B)A.x+2(12-x)=20B.2(12-x)-20=xC.2(12-x)=20-xD.x=20-2(12-x)5.已知当x=2时,代数式(3-a)x+a的值是10,当x=-2时这个代数式的值是-18.6.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为0.8(1+45%)x-x=50.7.解下列方程:(1)3-2(x-5)=x+1;(2)3(m+3)=-10(m-7),答案:4;-.8.解方程:=1.解:方程两边同乘以9,得=9,移项合并,得33
=1,方程两边同乘以7,得+6=7,移项合并,得=1,方程两边同乘以5,得=5,移项合并,得=1,去分母,得x+2=3,即x=1.9.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h,这样小明就算出了这辆自行车的速度.自行车的速度是多少?解:设自行车的速度是x千米/小时,由题意得x+×3=75×,解之得x=23.答:自行车的速度是23千米/小时.[教学说明]及时巩固所学的知识,强化去括号和去分母的过程,培养学生的符号感.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.2”中选取.3.3一元一次方程的解法第1课时一元一次方程的解法(一)【教学目标】1.会解含分母和括号的一元一次方程,归纳出解一元一次方程的一般步骤,提高运算能力。2.进一步感受解方程方法的灵活多样,体会解方程过程中的转化思想,发展数学思维。【教学重点】熟练解一元一次方程,归纳解一元一次方程的一般步骤。【教学难点】灵活运用解一元一次方程的步骤。【教学过程】一、回顾旧知,导入新课1.上节课我们学习了解一元一次方程中去括号和去分母的方法,用到了哪几个步骤?需要注意什么?2.说出下列各组数的最小公倍数:(1)2,3;(2)6,8;(3)3,4,8。二、问题引入,合作探究探究点解一元一次方程问例1解方程:17(x+14)=14(x+20)。33
分析提问:(1)观察方程17(x+14)=14(x+20),它与之前求解的方程有什么不同?括号前面的系数是分数。(2)一般分数系数比整数系数的情况更复杂,联想分数的通分与等式的基本性质2,可以将此方程的分数系数转化为我们之前熟悉的整数系数的形式吗?追问(1)例1两种解法有什么不同?(2)你认为哪种解法比较好?为什么?(1)解法一是我们已经学过的,按去括号、移项、合并同类项、未知数的系数化为1的步骤来解的;解法二是先去分母,将括号外的分数系数转化为整数系数,然后再类似解法一的步骤来解的。(2)解法一比较好。理由:去括号后,常数项都是不大的整数,计算起来比解法二更简便(答案不唯一)。思考解一元一次方程有哪些步骤?与同伴进行交流。解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。例2(教材P144例8)解方程:15(x+15)=12-13(x-7)。解:去分母,得6(x+15)=15-10(x-7)。去括号,得6x+90=15-10x+70。移项、合并同类项,得16x=-5。方程的两边都除以16,得x=-516。追问(1)对于例2,如果先去括号呢?去括号,得15x+3=12-13x+73。移项、合并同类项,得815x=-16。方程的两边都除以815,得x=-516。(2)(1)中的解法与例2中的解法相比,你认为哪种解法比较好?为什么?我认为例2中的解法比较好。理由:先去括号之后常数项是两个分数和一个整数,计算起来比例2中的解法更复杂(答案不唯一)。【对应训练】教材的随堂练习。三、知识延伸,巩固升华【对应训练】解方程:【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.解一元一次方程时要注意什么?2.解一元一次方程有哪些步骤?【作业布置】1.教材习题3.3中选取。2.《创优作业》主体本部分相应课时训练。第2课时解一元一次方程(二)【教学目标】1.准确并熟练的解一元一次方程;2.熟练地掌握一元一次方程的解法;3.使学生进一步理解在解方程时所体现出的化归思想方法;【教学重点和难点】1、进一步复习巩固解一元一次方程的解法步骤,2、灵活的运用解方程的方法。【教学手段】引导——活动——讨论33
【教学方法】启发式教学【教学过程】下面方程的解法对吗?若不对,请改正。解方程:解:去分母去括号移项合并系数化为1让学生通过观察发现其中的错误并进行改正,进一步熟悉解方程的步骤,为下面的环节做好铺垫。解方程1、解方程的步骤:去分母——去括号——移项——合并同类项——系数化为一2、即学即练(1)2(x+3)-5(1-x)=3(x-1)(2)(加强解方程准确率的训练,通过练习,同桌交流总结出有关每一步的注意事项。)3、归纳解一元一次方程的注意事项:(1)分母是小数时,根据分数的基本性质,把分母转化为整数;(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;(3)去括号时,不要漏乘括号内的项,不要弄错符号;(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;(6)不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。勇往直前(设计意图:灵活应用方程思想解决代数问题)(设计意图:培养学生发现问题解决问题的能力)感悟与收获解一元一次方程的一般步骤及简单应用33
作业布置教材中习题3.3中选取。3.4一元一次方程的应用第1课时一元一次方程的应用(一)【教学目标】1.掌握一元一次方程解简单应用题的方法和步骤;并能解答一元一次方程和、差、倍分问题的简单应用题.2.通过列方程解应用题,提高分析问题、解决问题的能力.3.理解和体会数学建模思想在实际问题中的作用,形成用数学知识解决问题的意识.【教学重点】找出等量关系,列出方程.【教学难点】找出等量关系,列出方程.【教学过程】一、情景导入,初步认知1.在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较它有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4此式恰是关于x的一元一次方程.解之得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.2.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后再将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.[教学说明]采用提问的形式,提高了学生的学习兴趣和动力.再通过算术法与方程解决实际问题的方法对比,让学生明白方程的优越性.二、思考探究,获取新知1.探究:某湿地公园举行观鸟活动,其门票价格如下,全价票20元/人,半价票10元/人.该公园共售出1200张门票,得总票款20000元,问全价票和半价票各售出多少张?(1)此问题中,有何等量关系?全价票款+半价票款=总票款.(2)怎样设未知数?设售出全价票x张,则售出半价票(1200-x)张.(3)根据等量关系列出方程,并求解.x·20+(1200-x)·10=20000解得:x=80033
所以半价票为:1200-800=400(张)即全价票售出800张,半价票售出400张.[教学说明]让学生体会找相等关系是列方程的关键所在.2.根据上面的解题过程,你能总结出一元一次方程解实际问题的一般步骤吗?[归纳结论]一元一次方程解实际问题的一般步骤为:[教学说明]培养学生观察、概括及语言表达能力.三、运用新知,深化理解1.教材例题.2.某工厂的产值连续增长,去年的是前年的1.5倍,今年的是去年的2倍,这三年的总产值为550万元,前年的产值是多少?解:设前年的产值为x,则去年的产值为1.5x,今年的产值为2×1.5x,则x+1.5x+2×1.5x=5505.5x=550x=100答:前年的产值为100万元.3.某面粉仓库存放的面粉运出15%后,还剩余42500kg,这个仓库原来有多少面粉?分析:题中给出的已知量为仓库中存放的面粉运出15%;仓库中还剩余42500kg.未知量为仓库中原来有多少面粉.已知量与未知量之间的一个相等关系:原来重量-运出重量=剩余重量设原来有x千克面粉,运出15%x千克,还剩余42500千克.解:设原来有x千克面粉,那么运出了15%x千克,根据题意,得x-15%·x=42500即x-x=42500x=42500解得,x=50000.经检验,符合题意.答:原来有50000千克面粉.4.某车间有28名工人,生产特种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套?解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得2×12x=18(28-x)解得x=12,生产螺母的人数为28-x=16答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母正好配套.5.蜘蛛有8条腿,蜻蜓有6条腿,现在有蜻蜓、蜘蛛若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5只,问蜘蛛、蜻蜓各有多少只?解:设有蜘蛛x只,蜻蜓有(2x-5)只,则8x+6(2x-5)=270解方程得x=15,2x-5=25答:蜘蛛有15只,蜻蜓有25只.6.在甲处劳动的有27人,在乙处劳动的有19人.33
现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?分析:(1)审题:从外处共调20人去支援.如果设调往甲处的是x人,则调往乙处的是多少人?一处增加x人,另一处便增加(20-x)人.看下表:调动前调动后甲处27人(27+x)人乙处19人[19+(20-x)]人(2)找等量关系:调人后甲处人数=调人后乙处人数的2倍.解:设应该调往甲处x人,那么调往乙处的人数就是(20-x)人.根据题意,得27+x=2[19+(20-x)].解方程27+x=78-2x,3x=51,x=17.20-x=20-17=3.经检验,符合题意.答:应调往甲处17人,调往乙处3人.7.整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?解:设先安排整理的人员有x人,依题意,得+=1解得x=6.经检验,符合题意.答:先安排整理的人员有6人.[教学说明]通过练习,巩固本节课所学的内容.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.4”中选取.第2课时一元一次方程的应用(二)【教学目标】1.进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.2.通过自主探究与小组合作交流,能合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,感悟方程是刻画现实世界的一个有效模型,训练学生运用新知识解决实际问题的能力.3.进一步体会数学中的化归思想,引导学生关注生活实际,建立数学应用意识,热爱数学.【教学重点】利用线形示意图分析行程问题中的数量关系.【教学难点】33
找出问题中的等量关系.【教学过程】一、情景导入,初步认知在行程问题中,最基本的等量关系式是什么?[教学说明]为本节课的教学作准备.二、思考探究,获取新知1.探究:星期天早晨,小斌和小强分别骑自行车从家里出发去参观雷锋纪念馆,已知他俩的家到纪念馆的路程相等,小斌每小时骑10km,他在上午10时到达;小强每小时骑15km,他在上午9时30分到达,求他们的家到雷锋纪念馆的路程.[教学说明]引导学生分析题意,找出题目中的等量关系式,并列出方程解答.2.讨论:在行程问题中还存在什么样的等量关系式?[归纳结论]相遇问题的基本关系:各路程之和=总路程.追及问题的基本关系:追及者的路程-被追者的路程=相距的路程.三、运用新知,深化理解1.教材例题.2.某城市出租车起步价为8元(3公里以内),以后每千米2元(不足1km按1km算),某人乘出租车花费20元,那么他大概行驶了多远?解:设这个人大概行驶x公里,根据题意得:8+2(x-3)=20解得:x=9答:这个人大概行驶9公里.3.甲、乙两列火车的长为144m和180m,甲车比乙车每秒多行4m.两列火车相向而行,从相遇到全部错开需9s,问两车的速度各是多少?解:设乙车每秒行驶xm,则甲车每秒行驶(x+4)m,根据题意得:9(x+x+4)=144+180,整理得:2x=32,解得:x=16,x+4=20.答:甲车每秒行驶20m,乙车每秒行驶16m.4.甲、乙两地的路程为360千米,一列快车从乙站开出,每小时行72千米;一列慢车从甲站开出,每小时行48千米.(1)若两列火车同时开出,相向而行,经过多少小时两车相遇?(2)若快车先开25分钟,两车相向而行,慢车行驶了多少时间两车相遇?解:(1)设两车同时开出相向而行,经x小时两车相遇,即72x+48x=360,解得:x=3,答:经过3小时两车相遇.(2)设慢车行驶y小时两车相遇;根据题意有:48y+72(y+)=360,解得:y=.答:慢车行驶了小时两车相遇四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.33
【课后作业】布置作业:教材“习题3.4”中第5、6题.3.5二元一次方程组【教学目标】1.认识二元一次方程和二元一次方程组,体会二元一次方程和二元一次方程组都是反映数量关系的重要数学模型.2.了解二元一次方程和二元一次方程组的解,会检验所给的一对未知数的值是否为二元一次方程或二元一次方程组的解.3.会求二元一次方程的正整数解.【教学重点】理解二元一次方程、二元一次方程组及其解的意义.【教学难点】1.感知二元一次方程解的不确定性和二元一次方程组解的确定性.2.求二元一次方程的正整数解.【教学过程】一、旧知回顾,新课导入同学们,在七年级上册,我们学习了一元一次方程,你还记得什么是一元一次方程吗?“元”“次”分别表示什么含义?请举例说明.答:在一个方程中,只含有一个未知数(元),并且未知数的次数都是1(次),等号两边都是整式,这样的方程叫做一元一次方程.如:2x+3=5,y+6=8.用一元一次方程可以解决许多实际生活问题.请大家思考教材P87引言中的问题,对于此类含有两个未知量的问题,我们能否根据题意设出两个未知数,并列出方程解决问题呢?本节课我们将对该问题进行探究与学习.二、问题引入,自主探究例1篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?问题1问题中包含了哪些必须同时满足的条件(即相等关系)?答:①胜的场数+负的场数=总场数;②胜场积分+负场积分=总积分.问题2设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?答:这两个条件可以用方程x+y=10,2x+y=16表示.问题3这两个方程中,分别含有几个未知数?所含未知数的项的次数是多少?答:分别含有两个未知数(x和y),所含未知数的项的次数都是1.概念引入:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.【对应训练】下列方程中,是二元一次方程的是(D)A.3x-2y=4zB.6xy+9=0C.1/x+4y=6D.4x=(y-2)/4探究点2二元一次方程(组)的解下面我们继续来探究引言中的问题.问题1满足方程x+y=10,且符合问题的实际意义的x,y的值有哪些?把它们填在表中.结合问题的实际意义,胜负场数均为非负整数.如果不考虑方程x+y=10与前面实际问题的联系,那么x=-1,y=11;x=0.5,y=9.5;……也都是这个方程的解.概念引入:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.问题2一个一元一次方程有几个解?一个二元一次方程呢?答:一个一元一次方程只有一个解,一个二元一次方程有无数多解.33
问题3结合在上表中填入的x,y的值,计算2x+y的值并填在表中.上表中哪对x,y的值同时满足方程2x+y=16.答:x=6,y=4同时满足方程2x+y=16.x=6,y=4既满足方程x+y=10,又满足方程2x+y=16.也就是说,x=6,y=4是方程x+y=10与方程2x+y=16的公共解.我们把x=6,y=4叫做二元一次方程组x+y=10,的解,这个解通常记作x=6,.2x+y=16y=4概念引入:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.②“一次”,即方程(组)所含未知数的项的次数都是1;③(方程组中的两个)方程的两边都是整式.问题4请联系上面的问题,确认这个队的胜负场数.答:这个队在10场比赛中胜6场、负4场.【对应训练】1.教材中的习题.2.若x=2,y=5是关于x,y的方程kx-2y=-2的一个解,则k的值为4.三、重点突破,提升探究【对应训练】教材的练习【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答:如何判断一个方程(组)是不是二元一次方程(组)?如何判断一对数值是不是二元一次方程(组)的解?【作业布置】教材的习题3.5中选取.3.6二元一次方程组的解法3.6.1代入消元法【教学目标】1.会用代入消元法解简单的二元一次方程组.2.经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法.3.通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识.【教学重点】用代入消元法解二元一次方程组.【教学难点】探索如何用代入消元法解二元一次方程组,感受“消元”思想.【教学过程】一、情境导入,初步认识在上节课中,我们列出了二元一次方程组,并知道是这个方程组的一个解,这个解是这样得到的呢?[教学说明]通过建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的最近“发展区”,愉悦地接受教学活动.二、思考探究,获取新知探究:解二元一次方程组1.对于方程组方程①、②33
中的x都表示1月份的天然气费,y都表示1月份的水费,由此方程②中的x、y分别与方程①中的x、y的值相同.由②式可得,x=y+20③.于是可以把③代入①式,得(y+20)+y=60④解方程④,得y=20,把y的值代入③式,得x=40,因此原方程组的解是2.解方程解:把②代入①,得2y-(3y-1)=7解得y=-6把y=-6代入②中,得x=-19.所以原方程组的解为[归纳结论]解二元一次方程组的基本想法是:消去一个未知数(简称为消元),得到一个一元一次方程,然后解这个一元一次方程.在上面的例子中,消去一个未知数的方法是:把其中一个方程的某一个未知数用含有另一个未知数的代数式表示,然后把它代入到另一个方程中,便得到一个一元一次方程,这种解方程组的方法叫做代入消元法,简称代入法.3.解方程组观察分析此方程组与2中的方程组在形式上的差别.易知2的方程组中直接将一个方程移项后代入另外一个方程,而此方程组中两个方程未知数的系数都不是1,不能直接代入,这时怎么办呢?能不能将其中一个方程适当变形,用一个未知数来表示另一个未知数?显然,这个变形是能够办到的.我们有两个办法,一个是某个方程两边同除以某个未知数的系数,使这个未知数的系数化1,化成例1的形式;另一个是将某个方程的某一个未知数移到方程的一边,其他各项移到另一边,再把这个未知数的系数化1,从而达到“用一个未知数来表示另一个未知数”的目的.显然第二种方法更为直接,因而考虑方程中各项的系数,选择一个系数比较简单的方程.易见①比较简单,所以将方程①中的x用y来表示.解:由①,得x=4+y,③将③代入②,得3(4+y)-8y-10=0,y=-0.8.将y=-0.8代入③,得x=1.2.所以方程组的解是x=1.2,y=-0.8.[教学说明]这里是先消去x,得到关于y的一元一次方程,可不可以先消去y呢?(让学生试一试,并比较两种解法的优劣.易知先消去x使变形后的方程比较简单和代入后化简比较容易.)33
由上面的解题过程,你能总结出用代入法解二元一次方程组的步骤吗?[归纳结论]代入法解二元一次方程组的步骤:(1)将方程组中的一个方程变形,使得一个未知数能用含另一未知数的代数式表示.(2)把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值.(3)把这个未知数的值代入代数式,求另一未知数的值.(4)写出方程组的解.三、运用新知,深化理解1.见教材例题.2.方程-x+4y=-15用含y的代数式表示x是(C)A.-x=4y-15B.x=-15+4yC.x=4y+15D.x=-4y+153.将y=-2x-4代入3x-y=5可得(B)A.3x-2x+4=5B.3x+2x+4=5C.3x+2x-4=5D.3x-2x-4=54.见教材P7例1.5.用代入法解方程组有以下过程:(1)由①得x=③;(2)把③代入②得3×-5y=5;(3)去分母得24-9y-10y=5;(4)解之得y=1,再由③得x=2.5.其中错误的一步是(C)A.(1)B.(2)C.(3)D.(4)6.把下列方程写成用含x的代数式表示y的形式:(1)3x+4y-1=0;(2)5x-2y+9=0分析:即将方程作适当的变形,把含有y的项放在方程的一边,其他的项移到方程另一边,再把y的系数化1.33
[教学说明]通过不同题型考察代入法解方程组,从而加强对所学知识点的巩固提高,加深对所学知识的理解与应用.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】1.布置作业:教材“习题3.6”中选取.2.完成同步练习册中本课时的练习.3.6.2加减消元法【教学目标】1.会阐述用加减法解二元一次方程组的基本思路:通过“加减”达到“消元”的目的,从而把二元一次方程组转化为一元一次方程来求解;2.会用加减法解简单的二元一次方程组.3.在探究的过程中,获得用加减法解二元一次方程组的初步经验.4.培养学生观察、归纳、类比、联想以及分析问题、解决问题的能力.【教学重点】学会用加减法解简单的二元一次方程组.【教学难点】准确灵活地选择和运用加减消元法解二元一次方程组.【教学过程】一、情境导入,初步认识1.解二元一次方程组的基本思路是什么?2.用代入法解方程组的关键是什么?3.你会解下面这个方程组吗?3x+5y=5,①3x-4y=23.②[教学说明]由问题导入新课,既复习了旧知识,又引出了新课题,最后设置悬念,既增强了学生的学习兴趣,又激发了学生的学习热情,对学生探究新知起到很好的推动作用,让学生发表自己的见解,又培养了学生的数学语言表达的能力,发挥了学生学习的主动性,使他们的注意力始终集中在课堂上.二、思考探究,获取新知1.解方程组我们可以用代入法来解这个方程组.你还有没有更简单的解法呢?我们知道解二元一次方程组的关键是消去一个未知数,使方程组转化为一元一次方程.33
分析方程①、②,可以发现未知数x的系数相同,因此只要把这两个方程的两边分别相减,就可以消去其中一个未知数x,得到一个一元一次方程.即①-②,得2x+3y-(2x-3y)=-1-5,解得6y=-6,y=-1.把y=-1代入①中,得2x+3×(-1)=-1解得x=1,因此原方程组的解是解上述方程组时,在消元的过程中,如果把方程①与方程②相加,可以消去一个未知数吗?试着做一做.2.解二元一次方程组看一看:y的系数有什么特点?想一想:先消去哪一个比较方便呢?用什么方法来消去这个未知数呢?解:①+②,得7x+3y+2x-3y=1+8解得x=1.把x=1代入①式,得7×1+3y=1,解得y=-2.因此原方程组的解是x=1,y=-2.[归纳结论]将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解.这种解法叫做加减消元法,简称加减法.3.讨论:用加减法解二元一次方程组的时候,什么条件下用加法?什么条件下用减法?[教学说明]这个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性,不仅强化了学生对概念的理解,又培养了学生勤于动脑,勤于探究的好习惯,还可为之后灵活运用加减法解二元一次方程组打下良好的基础.[归纳结论]当方程组中同一未知数的系数互为相反数时,我们可以把两方程相加,当方程组中同一未知数的系数相等时,我们可以把两方程相减,从而达到消元的目的.4.用加减法解二元一次方程组:问题:能直接相加减消掉一个未知数吗?如何把同一未知数的系数变成一样呢?解:①×3,得6x+9y=-33,③②-③,得-14y=42,解得y=-3,把y=-3代入①式,得2x+3×(-3)=-11,解得x=-1.因此原方程组的解是x=-1,y=-3.如果先消去y应如何解?会与上述的结果一样吗?试着做一做.[教学说明]通过练习使学生掌握用加减法解二元一次方程组.三、运用新知,深化理解33
33
[教学说明]通过这一系列有层次、有梯度、形式多样的练习,使学生可以灵活熟练地选择准确的加减法完成二元一次方程组的求解,并能在解答的过程中摸索运算技巧,培养计算能力和观察问题、分析问题与解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.【课后作业】1.布置作业:教材的习题3.6中选取.2.完成同步练习册中本课时的练习.3.7二元一次方程组的应用第1课时二元一次方程组的应用(一)【教学目标】1.通过实际问题使学生感受二元一次方程组的广泛应用,体会列二元一次方程组是解决某些实际问题的一种有效的数学模型,增强应用意识;2.能够由题意找出等量关系,列出二元一次方程组并检验所得结果是否符合实际意义.3.教师引导学生的自主探索,体会把实际问题转化到数学方程问题的数学思想方法,加强知识的综合运用,培养学生分析问题和解决问题的能力.4.使学生体验数学活动充满探索与创造,体会到经济社会中数学的应用价值,提高学生探索的精神与能力.【教学重点】把应用问题转化为数学问题的过程,即对实际问题的数学模型的建立.【教学难点】在实践探索中寻找解题方案.【教学过程】一、情景导入,初步认知“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”你知道这四句话的意思吗?你能应用所学知识解决这个问题吗?分析:本题涉及的等量关系有:鸡头数+兔头数=鸡的腿数+兔子的腿数=解:设鸡有x只,兔子有y只,根据等量关系,得答:笼中有23只鸡,12只兔.33
[教学说明]通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.某业余运动员针对自行车和长跑项目进行专项训练,某次训练中,他骑自行车的平均速度为10米每秒,跑步的平均速度为103米每秒,自行车路段和长跑路程共5千米,共用时15分钟,求自行车路段和长跑路段的长度.分析:本题涉及的等量关系有:自行车路段长度+长跑路段长度=总路程.骑自行车的时间+长跑时间=总时间.解:设自行车路段的长度为xm,长跑路段长度为ym,依题意得:答:自行车路段和长跑路段的长度分别为3000米、2000米.2.某食品厂要配制含蛋白质15%的食品100千克,现在有含蛋白质分别为20%、12%的甲、乙两种配料,用这两种配料可以配制出所要求的食品吗?如果可以的话,它们各需多少千克?分析:本问题涉及的等量关系有:甲配料质量+乙配料质量=总质量,甲配料含蛋白质质量+乙配料含蛋白质质量=总蛋白质质量.解:设含蛋白质20%的配料需要xkg,含蛋白质12%的配料需要ykg,依题意,得答:可以配制出所要的食品,其中20%的配料需要37.5千克,12%的配料需要62.5千克.3.根据上面的两个例题,你能总结用二元一次方程组解决实际问题的步骤吗?[归纳结论]用二元一次方程组解实际问题的步骤:(1)审题,分析题目中的已知与未知;(2)找出数量关系;(3)设未知数列方程组;(4)求解方程组;(5)检验;(6)写出答案.[教学说明]感受方程模型思想的必要性和优越性,并从列一元一次方程和列二元一次方程组的方法中,领会列二元一次方程组,思维方式的简洁明了性和在解一些等量关系较为复杂的应用题时体现的优越性.三、运用新知,深化理解1.如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?33
解:设小长方形的长是x厘米,宽是y厘米依题意得答:小长方形的长是36厘米,宽是12厘米.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?解:设订做的工作服是x套,要求的期限是y天,依题意,得答:订做的工作服是3375套,要求的期限是18天.3.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?解:设甲的速度为x米/秒,乙的速度为y米/秒,依题意得答:甲的速度为6米/秒,乙的速度为4米/秒.4.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:设书包的单价为x元,随身听的单价为y元,根据题意,得33
答:该同学看中的随身听单价为360元,书包单价为92元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:360+2=362(元).因为362<400,所以也可以选择在超市B购买.因为362>361.6,所以在超市A购买更省钱.[教学说明]让学生通过练习巩固列二元一次方程组解应用题的技能.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.【课后作业】1.布置作业:教材“习题3.7”中选取.2.完成同步练习册中本课时的练习.第2课时二元一次方程组的应用(二)【教学目标】1.通过对实际问题的探索与解决,逐步形成结合具体事例情境发现,提出数学问题的能力;2.学会用二元一次方程组解决简单的实际问题.3.通过学生积极思考、互相讨论,经历探索事物之间的数量关系,形成方程模型.4.通过在解决实际问题的过程中同伴之间的讨论、交流与合作,体会与他人合作的重要性,逐步形成积极参与讨论、敢于发表见解并尊重与理解他人见解的合作意识.【教学重点】1.学生积极参与讨论和探究问题;2.抽象出数学模型.【教学难点】用二元一次方程组解决较复杂的实际问题.【教学过程】一、情景导入,初步认知通过前面的学习,你能说出列二元一次方程组解决实际问题的步骤吗?其中什么是关键?[教学说明]采用提问的形式,让学生对列二元一次方程组解决实际问题的步骤的复习,为本节课作铺垫.二、思考探究,获取新知1.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需要10min,从学校到家里需15min.问小华家离学校多远?探究:(1)你能画线段表示本题的数量关系吗?(2)列方程组;(3)解方程组;(4)检验写出答案.讨论:本题是否还有其它解法?2.某城市规定:出租车起步价所包含的路程为0至3千米,超过3千米的部分按每千米另收费,甲说“我乘这种出租车走了11千米,付了17元.”乙说“我乘这种出租车走了23千米,付了35元.”请你算一算:出租车的起步价是多少?超过3千米后,每千米的车费是多少元?解:设出租车的起步价x元,超过3km后每千米收费y元,依题意,得33
答:这种出租车的起步价是5元,超过3千米后每千米1.5元.3.某装订车间的工人要将一批书打包后送往邮局,其中每包书的数目相等,第一次它们领来这批书的,结果打了14个包还多35本,第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了11包,那么这批书共有多少本?解:设这批书共有x本,每包书有y本,依题意得答:这批书共有1500本.[教学说明]在学生探索解题方法的过程中,教师要鼓励学生多角度地思考,只要学生的方法有道理,就要给予肯定和鼓励,鼓励学生进行质问和大胆创新.三、运用新知,深化理解1.小明在拼图时,发现8个大小一样的长方形,恰好可以拼成如下图所示的一个大的长方形.小红看见了,说:“我来试一试”,结果小红拼成如下图所示的正方形,但中间还留有一个边长刚好为2mm的小正方形,你能解释一下吗?你能求出这些长方形的长和宽吗?分析:①观察小明的拼图你能发现小长方形的长xmm与宽ymm之间的数量关系吗?(根据矩形的对边相等,得3x=5y)②再观察小红的拼图,你能写出表示小长方形的长xmm与宽ymm之间的另一个关系式吗?(显然有x+2=2y)8个小矩形的面积和=8xy=8×10×6=480(mm2)大正方形的面积=x+2y2=10+2×62=484(mm2)484-480=4=22因此小红拼出的大正方形中间还留下了一个恰好是边长为2mm的小正方形.2.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?33
解:设甲服装的成本是x元,乙服装的成本是y元,依题意得解得x=300,y=200.答:甲、乙两件服装的成本分别为300元、200元.3.某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x万元,总支出y万元):题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x万元,去年的总支出是y万元,由题意,得所以(1+15%)x=2300,(1-10%)y=1350.故今年的总产值是2300万元,总支出是1350万元.4.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分做侧面,另一部分做底面,已知每张白卡纸可以做2个侧面,或者3个底面,如果1个侧面和2个底面可以做成一个包装盒,那么如何分才能使做成的侧面和底面正好配套?解:设用x张白卡纸做盒身,y张白卡纸做盒底盖,根据题意,得由于解为分数,所以如果不允许剪开,则只能做成16个包装盒,无法全部利用;如果允许剪开,则分法很多,例如可以将一张白卡纸一分为二,用8张半做盒身,11张半做盒底盖,可以做成盒身17个,盒底盖34个,正好配套成17个包装盒,较充分地利用了材料.[教学说明]让学生通过练习巩固列二元一次方程组解应用题的技能.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.【课后作业】1.布置作业:教材“习题3.7”中选取.2.完成同步练习册中本课时的练习.*3.8三元一次方程组33
【教学目标】1.了解三元一次方程组的概念.2.会用“代入”、“加减”把三元一次方程组化为“二元”、进而化为“一元”方程来解决.3.能根据三元一次方程组的具体形式选择适当的解法.4.让学生认识三元一次方程组的求解关键在于“消元”,进一步熟练掌握“代入”、“加减”消元的方法.5.让学生感受把新知转化为已知、把不会的问题转化为学过的问题、把难度大的问题转化为难度较小的问题这一化归思想,体会数学学习的方法.【教学重点】三元一次方程组的解法及“消元”思想.【教学难点】根据方程组的特点,选择消哪个元,选择用什么方法消元.【教学过程】一、情景导入,初步认知前面我们学习了二元一次方程组及其解法——消元法.有些有两个未知数的问题,可以列出二元一次方程组来解决,实际上,有不少问题含有更多未知数,我们来看下面的问题:小丽家三口人的年龄之和是80岁,小丽的爸爸比妈妈大6岁,小丽的年龄是爸爸与妈妈年龄和的,试问这家人的年龄分别是多少?对于这个问题,我们可以用二元一次方程组来解决.这个问题中有三个未知数,如果我们设三个未知数,你能列出几个方程?它们组成一个方程组,你能解出来吗?[教学说明]通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题.二、思考探究,获取新知1.对于上面的问题,我们可以设爸爸的年龄为x,妈妈的年龄为y,小丽的年龄为z,根据题意得:x+y+z=80,x-y=6,x+y=7z.三人的年龄必须同时满足上述三个方程,所以,我们把这三个方程联立在一起写成:可以发现,这个方程组中含有三个未知数,每个方程中含未知数的项的次数均为1,并且一个共有三个方程,像这样的方程组叫做三元一次方程组.在三元一次方程组中,适合每一个方程的一组未知数的值,叫做这个方程组的一个解.2.怎样解三元一次方程组呢?回忆我们在解二元一次方程组时,其基本思想是什么?你会用几种方法解二元一次方程组?对于三元一次方程组,我们能不能先消掉一个或两个未知数,转化为二元一次方程组或一元一次方程求解.我们把①、②两式相加得到一个只含x和z的二元一次方程,即2x+z=86.再把②、③33
两式相加又得到一个只含x和z的二元一次方程,即2x=6+7z.由此可得一个关于x、z的二元一次方程组解这个方程组得把x=38,z=10代入①式,得38+y+10=80,解得y=32.因此,三元一次方程组的解为3.思考:由此你能总结出解三元一次方程组的步骤吗?[归纳结论]解三元一次方程组的步骤:1.利用代入法或加减法先消掉一个未知数,将三元一次方程组转化为二元一次方程组;2.解二元一次方程组;3.将二元一次方程组的解代入其中一个方程,求出第三个未知数.[教学说明]结合情境问题中列出的方程组,类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路.三、运用新知,深化理解1.见教材P22例题.33
33
33
[教学说明]检查学生是否掌握三元一次方程组的求解.四、师生互动课堂小结1.三元一次方程组的概念.2.三元一次方程组的解法.注意选好要消的“元”,选好要消的“法”.3.谈谈求解多元一次方程组的思路.【课后作业】1.布置作业:教材“习题3.8”中选取.2.完成同步练习册中本课时的练习.33
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)