首页

人教版八年级数学上册 第十四章 因式分解压轴训练(单元复习 7类压轴)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/30

2/30

剩余28页未读,查看更多内容需下载

第十四章因式分解压轴训练01压轴总结目录压轴题型一 已知因式分解的结果求参数1压轴题型二 已知因式分解中错题正解2压轴题型三 利用整体法提公因式因式分解3压轴题型四 因式分解要彻底分解5压轴题型五 利用十字相乘法因式分解8压轴题型六 分组分解法因式分解14压轴题型七 因式分解的应用1702压轴题型压轴题型一 已知因式分解的结果求参数例题:(2024上·重庆南川·八年级统考期末)若关于x的多项式可以分解为,则常数.巩固训练1.(2024上·湖北孝感·八年级统考期末)已知二次三项式有一个因式是,则的值为.2.多项式可以因式分解为,则系数.压轴题型二 已知因式分解中错题正解例题:甲、乙两个同学分解因式时,甲看错了,分解结果为;乙看错了,分解结果为,则正确的分解结果为.巩固训练1.在分解因式时,小明看错了b,分解结果为;小张看错了a,分解结果为,求a,b的值.30 压轴题型三 利用整体法提公因式因式分解例题:(2024上·四川眉山·八年级统考期末)分解因式:.巩固训练1.把式子分解因式,结果是2.因式分解:3.分解因式:(1).(2).压轴题型四 因式分解要彻底分解例题:因式分解(1)(2)巩固训练1.因式分解:.2.分解因式:(1);(2).3.因式分解(1)(2)30 4.分解因式.(1);(2).压轴题型五 利用十字相乘法因式分解例题:(2024上·北京东城·八年级统考期末)利用整式的乘法运算法则推导得出:.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得.通过观察可把看作以x为未知数,a、b、c、d为常数的二次三项式,此种因式分解是把二次三项式的二项式系数与常数项分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式的二项式系数2与常数项12分别进行适当的分解,如图2,则.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:;(2)用十字相乘法分解因式:;(3)结合本题知识,分解因式:.巩固训练1.十字相乘法分解因式:(1)(2)(3)30 (4)(5)(6)(7)(8)(9)(10)(11)(12)2.阅读理解:用“十字相乘法”分解因式的方法(如图).第一步:二次项;第二步:常数项,画“十字图”验算“交叉相乘之和”;  第三步:发现第③个“交叉相乘之和”的结果等于一次项.即.像这样,通过画“十字图”,把二次三项式分解因式的方法,叫做“十字相乘法”.运用结论:(1)将多项式进行因式分解,可以表示为_______________;(2)若可分解为两个一次因式的积,请画好“十字图”,并求整数的所有可能值.30 压轴题型六 分组分解法因式分解例题:阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为.此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:(1)因式分解:;(2)已知,求的值.巩固训练1.(2024上·山西长治·八年级统考期末)阅读下列材料,并完成相应的任务.数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可以提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,其过程如下:.此种因式分解的方法叫做“分组分解法”.任务:(1)因式分解:(2)已知,,求的值.2.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解.例如:以下两个式子的分解因式的方法就称为分组分解法.①;30 ②试用上述方法分解因式:(1);(2).3.八年级课外兴趣小组活动时,老师提出了如下问题:将因式分解.经过小组合作交流,得到了如下的解决方法:解法一:原式解法二:原式小明由此体会到,对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法等方法达到因式分解的目的.这种方法可以称为分组分解法.(温馨提示:因式分解一定要分解到不能再分解为止)请你也试一试利用分组分解法进行因式分解:(1)因式分解:;(2)因式分解:.压轴题型七 因式分解的应用例题:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、添项拆项法、十字相乘法等等.30 ①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:②十字相乘法:十字相乘法能用于二次三项式的分解因式.分解步骤:1.分解二次项,所得结果分别写在十字交叉线的左上角和左下角;2.分解常数项,所得结果分别写在十字交叉线的右上角和右下角;3.交叉相乘,求代数和,使其等于一次项;4.观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法.例如:        分析:  观察得出:两个因式分别为与解:原式③添项拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如:.(1)仿照以上方法,按照要求分解因式:①(分组分解法)______;②(十字相乘法)______;(2)已知:a、b、c为的三条边,,判断的形状.巩固训练1.(2024上·山东东营·八年级统考期末)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,2,,,,分别对应下列六个字:华、我、爱、美、游、中,现将因式分解,结果呈现的密码信息可能是(    )A.爱我中华B.我游中华C.中华美D.我爱美2.(2024·全国·八年级竞赛)已知,则30 的值(    ).A.一定是负数B.一定是正数C.一定不是正数D.不能确定3.(2024上·河南商丘·八年级统考期末)[阅读材料]将四项及四项以上的多项式进行因式分解,我们一般使用分组分解法.分组分解法有两种分法:一是“”分组.二是“”分组.两种分组的主要区别就在于多项式中是否存在三项可以构成完全平方,若可以构成完全平方,则采用“”分组;若无法构成,则采用“”分组.例如:;.[应用知识](1)因式分解:.(2)因式分解:.[拓展应用](3)已知一三角形的三边长分别是,且满足:.试判断这个三角形的形状,并说明理由.4.(2024上·广东汕头·八年级校联考期末)阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做配方法,运用配方法及平方差公式能对一些多项式进行因式分解.例如:.即:.根据以上材料,解答下列问题:(1)因式分解:;(2)已知,,是的三边长,且满足,求的最长边的取值范围;(3)已知,,是的三边长,且满足,求的周长.30 第十四章因式分解压轴训练01压轴总结目录压轴题型一 已知因式分解的结果求参数1压轴题型二 已知因式分解中错题正解2压轴题型三 利用整体法提公因式因式分解3压轴题型四 因式分解要彻底分解5压轴题型五 利用十字相乘法因式分解8压轴题型六 分组分解法因式分解14压轴题型七 因式分解的应用1702压轴题型压轴题型一 已知因式分解的结果求参数例题:(2024上·重庆南川·八年级统考期末)若关于x的多项式可以分解为,则常数.【答案】1【分析】本题考查了因式分解的意义,利用因式分解得出相等整式是解题的关键.根据整式合并后对应项的系数相等即可解答.【详解】解:∵关于x的多项式可以分解为,∴,∴.故答案为:1.巩固训练1.(2024上·湖北孝感·八年级统考期末)已知二次三项式有一个因式是,则的值为.【答案】【分析】设另一个因式为,得,根据整式的乘法运算法则即可求解.30 本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.【详解】解:设另一个因式为,得,则∴,解得,∴另一个因式为,的值为.故答案为:.2.多项式可以因式分解为,则系数.【答案】【分析】利用多项式乘多项式法则将展开,即可得到k的值.【详解】解:,∵多项式可以因式分解为,∴.故答案为:.【点睛】此题主要考查了因式分解的定义和整式乘法,利用多项式乘多项式法则将正确展开是解题关键.压轴题型二 已知因式分解中错题正解例题:甲、乙两个同学分解因式时,甲看错了,分解结果为;乙看错了,分解结果为,则正确的分解结果为.【答案】【分析】根据题意分别运算和,确定、的值,然后进行因式分解即可.【详解】解:∵甲看错了,分解结果为,∴由,可知,30 又∵乙看错了,分解结果为,∴由,可知,∴,∵,∴正确的分解结果为.故答案为:.【点睛】本题主要考查了整式乘法运算以及因式分解的知识,解决本题的关键是理解题意,求出、的值.巩固训练1.在分解因式时,小明看错了b,分解结果为;小张看错了a,分解结果为,求a,b的值.【答案】,【分析】根据题意甲看错了b,分解结果为,可得a系数是正确的,乙看错了a,分解结果为,b系数是正确的,在利用因式分解是等式变形,可计算的参数a、b的值.【详解】解:∵,小明看错了b,∴,∵,小张看错了a,∴,∴,.【点睛】本题主要考查因式分解的系数计算,解题的关键在于弄清哪个系数是正确的.压轴题型三 利用整体法提公因式因式分解例题:(2024上·四川眉山·八年级统考期末)分解因式:.【答案】【分析】本题考查了公式法及提公因式法分解因式,熟练掌握分解因式的方法是关键.按照提公因式法分解法进行分解因式即可.30 【详解】解:.故答案为:.巩固训练1.把式子分解因式,结果是【答案】【分析】此题考查了因式分解的方法,先提公因式,然后利用平方差公式因式分解即可,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】.故答案为:.2.因式分解:【答案】【分析】本题考查的是因式分解,熟练的利用提公因式的方法分解因式是解本题的关键,本题先提取公因式,分解后再次提取公因式2,从而可得答案.【详解】解:30 ;3.分解因式:(1).(2).【答案】(1)(2)【分析】(1)利用提公因式法因式分解即可;(2)利用提公因式法因式分解即可.【详解】(1).(2).【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.压轴题型四 因式分解要彻底分解例题:因式分解(1)(2)【答案】(1)(2)30 【分析】(1)先提取公因式,然后利用平方差公式分解因式即可;(2)先利用平方差公式分解因式,再利用完全平方公式分解因式即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.巩固训练1.因式分解:.【答案】【分析】先利用完全平方公式和平方差公式化简,再利用十字相乘进行因式分解即可.【详解】解:原式.【点睛】本题考查因式分解,熟练掌握完全平方公式和平方差公式以及十字相乘是解题的关键.2.分解因式:(1);(2).【答案】(1)(2)【分析】(1)用提公因式法分解因式即可;30 (2)先提公因式,然后再利用平方差公式分解因式即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式.3.因式分解(1)(2)【答案】(1)(2)【分析】(1)先提公因式,再用完全平方公式分解因式即可;(2)先提公因式,再用平方差公式分解因式即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.分解因式.(1);(2).30 【答案】(1)(2)【分析】(1)原式先提取公因式y,再运用完全平方公式进行因式分解即可;(2)先运用平方差公式分解,再提取公因式即可【详解】(1)==(2)===【点睛】此题考查了提公因式法,公式法分解因式.解题的关键是注意因式分解的步骤:先提公因式,再利用公式法分解,注意分解要彻底.压轴题型五 利用十字相乘法因式分解例题:(2024上·北京东城·八年级统考期末)利用整式的乘法运算法则推导得出:.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得.通过观察可把看作以x为未知数,a、b、c、d为常数的二次三项式,此种因式分解是把二次三项式的二项式系数与常数项分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式的二项式系数2与常数项12分别进行适当的分解,如图2,则.30 根据阅读材料解决下列问题:(1)用十字相乘法分解因式:;(2)用十字相乘法分解因式:;(3)结合本题知识,分解因式:.【答案】(1)(2)(3)【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:,;(2)解:,;(3)解:,.巩固训练30 1.十字相乘法分解因式:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)【答案】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)30 【分析】本题主要考查十字法因式分解的应用:(1),从而运用十字相乘法可分解因式;(2),从而运用十字相乘法可分解因式;(3),从而运用十字相乘法可分解因式;(4),从而运用十字相乘法可分解因式;(5),从而运用十字相乘法可分解因式;(6),从而运用十字相乘法可分解因式;(7),从而运用十字相乘法可分解因式;(8),从而运用十字相乘法可分解因式;(9),从而运用十字相乘法可分解因式;(10),从而运用十字相乘法可分解因式;(11),从而运用十字相乘法可分解因式;(12),从而运用十字相乘法可分解因式【详解】(1);(2);(3);(4);30 (5);(6);(7)(8);(9);(10);(11)(12).2.阅读理解:用“十字相乘法”分解因式的方法(如图).第一步:二次项;第二步:常数项,画“十字图”验算“交叉相乘之和”;30   第三步:发现第③个“交叉相乘之和”的结果等于一次项.即.像这样,通过画“十字图”,把二次三项式分解因式的方法,叫做“十字相乘法”.运用结论:(1)将多项式进行因式分解,可以表示为_______________;(2)若可分解为两个一次因式的积,请画好“十字图”,并求整数的所有可能值.【答案】(1)(2)图见解析,,,,16【分析】(1)根据“十字相乘法”的步骤分解因式即可;(2)根据“十字相乘法”的步骤分解因式即可.【详解】(1)解:,常数项,,,故答案为:;(2)解:,常数项,画“十字图”如下:  ,,,16.【点睛】本题考查了十字相乘法分解因式,理解十字相乘法是解题的关键.30 压轴题型六 分组分解法因式分解例题:阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为.此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:(1)因式分解:;(2)已知,求的值.【答案】(1)(2)【分析】本题考查了因式分解的新方法,及其应用.(1)根据方法,适当分组分解即可.(2)先因式分解,后代入求值即可.【详解】(1).(2),又,故原式.巩固训练1.(2024上·山西长治·八年级统考期末)阅读下列材料,并完成相应的任务.30 数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可以提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,其过程如下:.此种因式分解的方法叫做“分组分解法”.任务:(1)因式分解:(2)已知,,求的值.【答案】(1)(2),8【分析】本题考查因式分解,掌握“分组分解法”是解题的关键.(1)仿照材料中的方法,前两项为一组,后两项为一组,利用“分组分解法”求解;(2)先利用“分组分解法”进行因式分解,再将,作为整体代入求值.【详解】(1)解:,.(2)解:.将,代入,得:原式.2.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解.例如:以下两个式子的分解因式的方法就称为分组分解法.①;②试用上述方法分解因式:(1);30 (2).【答案】(1)(2)【分析】此题考查了分解因式分组分解法,熟练掌握因式分解的方法是解本题的关键.(1)原式前三项结合,后两项结合,利用完全平方公式及提取公因式方法分解即可;(2)原式后三项提取,利用完全平方公式及平方差公式分解即可.【详解】(1)解:原式;(2)解:原式3.八年级课外兴趣小组活动时,老师提出了如下问题:将因式分解.经过小组合作交流,得到了如下的解决方法:解法一:原式解法二:原式小明由此体会到,对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法等方法达到因式分解的目的.这种方法可以称为分组分解法.(温馨提示:因式分解一定要分解到不能再分解为止)请你也试一试利用分组分解法进行因式分解:(1)因式分解:;(2)因式分解:.30 【答案】(1)(2)【分析】本题考查了分组分解法因式分解;(1)先分组,然后根据提公因式法与平方差公式因式分解即可求解;(2)先分组,然后根据提公因式法以及完全平方公式因式分解,即可求解.【详解】(1)解:;(2).压轴题型七 因式分解的应用例题:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、添项拆项法、十字相乘法等等.①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:②十字相乘法:十字相乘法能用于二次三项式的分解因式.分解步骤:1.分解二次项,所得结果分别写在十字交叉线的左上角和左下角;2.分解常数项,所得结果分别写在十字交叉线的右上角和右下角;3.交叉相乘,求代数和,使其等于一次项;4.观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法.例如:        分析:30   观察得出:两个因式分别为与解:原式③添项拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如:.(1)仿照以上方法,按照要求分解因式:①(分组分解法)______;②(十字相乘法)______;(2)已知:a、b、c为的三条边,,判断的形状.【答案】(1)①;②(2)是直角三角形【分析】(1)①把原式分组成,然后提公因式法分解因式即可;②直接利用十字相乘法分解即可;(2)把原式进行因式分解得到,进而求出,再利用勾股定理的逆定理求解即可.【详解】(1)解:①,故答案为:;②,30 故答案为:;(2)解:∵,∴,∴,∴,∵,∴,∴,∴,∵,∴是直角三角形.【点睛】本题考查因式分解的方法及其在几何图形问题中的应用,读懂题中的分解方法并熟练掌握整式乘法公式是解题的关键.巩固训练1.(2024上·山东东营·八年级统考期末)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,2,,,,分别对应下列六个字:华、我、爱、美、游、中,现将因式分解,结果呈现的密码信息可能是(    )A.爱我中华B.我游中华C.中华美D.我爱美【答案】A【分析】本题考查因式分解的应用,综合利用提公因式法和公式法进行因式分解,即可求解.【详解】解:,2,,,对应的汉字分别为:爱、我、中、华,呈现的密码信息可能是“爱我中华”,故选A.2.(2024·全国·八年级竞赛)已知,则的值(    ).A.一定是负数B.一定是正数C.一定不是正数D.不能确定30 【答案】B【分析】本题考查了整式的加减,完全平方公式.此题可直接用多项式M减去多项式N,然后化简,最后把得出的结果与零比较确定的正负.【详解】解:∵,∴.故选:B3.(2024上·河南商丘·八年级统考期末)[阅读材料]将四项及四项以上的多项式进行因式分解,我们一般使用分组分解法.分组分解法有两种分法:一是“”分组.二是“”分组.两种分组的主要区别就在于多项式中是否存在三项可以构成完全平方,若可以构成完全平方,则采用“”分组;若无法构成,则采用“”分组.例如:;.[应用知识](1)因式分解:.(2)因式分解:.[拓展应用](3)已知一三角形的三边长分别是,且满足:.试判断这个三角形的形状,并说明理由.【答案】(1);(2);(3)这个三角形为等边三角形.理由见解析【分析】本题考查了因式分解以及因式分解的应用.(1)利用“”分组,再利用提公因式法分解即可;(2)利用“”分组,先利用完全平方公式计算,再利用平方差公式分解即可;(3)整理后,利用“”分组,再利用完全平方公式分解得到,根据非负数的性质求解即可.【详解】解:(1)30 ;(2);(3)这个三角形为等边三角形.理由:,,,,.,,,这个三角形是等边三角形.4.(2024上·广东汕头·八年级校联考期末)阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做配方法,运用配方法及平方差公式能对一些多项式进行因式分解.例如:.即:.根据以上材料,解答下列问题:(1)因式分解:;30 (2)已知,,是的三边长,且满足,求的最长边的取值范围;(3)已知,,是的三边长,且满足,求的周长.【答案】(1)(2)(3)【分析】本题考查因式分解应用,三角形三边关系,平方得非负性.(1)根据题意进行求解即可;(2)利用完全平方公式将所给式子变形,再根据三角形三边关系即可求解;(3)将式子变形利用平方非负性即可计算出,,三边长,再计算周长即可.【详解】(1)解:根据题意列式:∴,即:;(2)解:∵,∴,即:,∴,∵,,是的三边长,∴,即:,∵是的最长边,∴;(3)解:∵,∴,即:,∴,∴的周长为:.30

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2024-11-07 17:40:02 页数:30
价格:¥3 大小:1.22 MB
文章作者:浮城3205426800

推荐特供

MORE