初中数学新湘教版七年级上册第2章代数式教案(2025秋)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第2章代数式2.1代数式的概念和列代数式第1课时代数式的概念和列代数式第1课时代数式的概念和列代数式【教学目标】1.经历探索规律并用代数式表示规律的过程,感受从具体到抽象的思想。2.能用字母表示运算律、计算公式以及一些简单问题中的数量关系和变化规律。3.了解代数式的概念。4.学会列代数式【教学重点】用代数式表示规律、数量关系以及代数式的概念。【教学难点】探索规律的过程及用代数式表示规律的方法。【教学过程】一、创设情境,新课导入想一想,填一填:兔子数量嘴/张耳朵/只腿/条1只1242只2483只3612…………n只n2n4n由此看出n是一个字母,它代表“很多”的数量。用字母n可以清楚地表示出兔子数量和兔子的嘴、耳朵、腿之间的数量关系。本节课我们一起来探寻这些式子的秘密。二:交流讨论,探究新知问题1用长度相同的小棒按如图所示的方式拼摆正方形。(1)拼摆5个这样的正方形需要多少根小棒?(2)拼摆100个这样的正方形需要多少根小棒?你是怎么得到的?(3)拼摆x个这样的正方形需要多少根小棒?与同伴进行交流。(4)拼摆200个这样的正方形需要多少根小棒?你是怎样计算的?与同伴进行交流。根据前面的分析,当x=200时,1+3x=1+3×200=601,即拼摆200个这样的正方形需要601根小棒。问题2(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流。在一些运算律和计算公式中用到了字母。举例如下:加法交换律ɑ+b=b+ɑ加法结合律(ɑ+b)+c=ɑ+(b+c)乘法交换律ɑb=bɑ乘法结合律(ɑb)c=ɑ(bc)乘法对加法的分配律ɑ(b+c)=ɑb+ɑc问题3(1)今年李华m岁,去年李华(m-1)岁,5年后李华(m+5)岁。(2)ɑ个人n天完成一项工作,那么平均每人每天的工作量为。(3)某商店上月的收入为ɑ元,本月的收入比上月收入的2倍还多10元,本月的收入是(2ɑ+10)元。17
(4)如果一个正方体的棱长是ɑ-1,那么这个正方体的体积是(ɑ-1)3,表面积是6(ɑ-1)2。用具体数值代替代数式中的字母,就可以求出代数式的值。【对应训练】1.判断下列式子哪些是代数式,哪些不是代数式,是的打“√”,不是的打“×”。2~3.教材的随堂练习题。三、随堂训练,课堂总结【作业布置】教材习题2.1中选取。第2课时代数式的应用【教学目标】1.能分析具体问题中的简单数量关系,并用代数式表示.2.初步培养学生的观察、分析能力,发展学生的抽象能力与符号意识,感受数学与实际生活的密切联系.【教学重点】列代数式.【教学难点】根据稍复杂实际问题中的数量关系列代数式.【教学过程】一、创设情境,新课导入在解决一些数学问题与实际问题时,往往需要先把问题中的数量关系用含有数、字母和运算符号的式子表示出来,也就是要列代数式.回忆上节课所学内容,解答下面的问题:在国庆阅兵式上,有女民兵和三军女兵两种特殊方队.(1)若女民兵方队有ɑ人,三军女兵方队有b人,则两种方队共有(ɑ+b)人;(2)若三军女兵方队的平均年龄为m岁,比女民兵方队的平均年龄大n岁,则女民兵方队的平均年龄为(m-n)岁;(3)若三军女兵方队共有m排,且每排有25人,则三军女兵方队的人数为25m;(4)女民兵方队用ts走了sm,则她们的平均速度可以表示为stm/s.这就是列代数式,这节课我们将更深入地对这方面进行探究,让我们准备好一起进入今天的探索之旅吧!二、自主思考,探究新知思考我们曾了解过代数式的意义,如2ɑ+3的意义是ɑ的2倍与3的和.反过来,如果已知某种数学运算,如ɑ,b两数的和与差的积,那么该如何用代数式表示呢?例1用代数式表示:(1)比m的3倍小3的数;(2)m的平方的3倍与5的和;(3)m的倒数与n的积.解:(1)3m-3;(2)3m2+5;(3)nm.【对应训练】教材的练习题.例2用代数式表示:(1)购买2个单价为ɑ元的面包和3瓶单价为b元的饮料所需的钱数.(2)把ɑ元钱存入银行,存期3年,年利率为2.75%,到期时的利息是多少元?(3)某商品的进价为x元,先按进价的1.1倍标价,后又降价80元出售,现在的售价是多少元?分析提问:想一想各小题中的数量关系是怎样的?试着填写下表:解:(1)购买2个单价为ɑ元的面包和3瓶单价为b元的饮料所需的钱数为(2ɑ+3b)元.(2)根据题意,得ɑ×2.75%×3=8.25%ɑ,因此到期时的利息为8.25%ɑ元.17
(3)现在的售价为(1.1x-80)元.从上面的例子可以看出,用字母表示数,字母可以和数一样参与运算,从而可以用代数式把数量或数量关系简明地表示出来,更具有一般性.对应训练教材的练习.三、强化训练,巩固提升四、随堂训练,课堂总结探究点3代数式的意义例3甲、乙两地之间公路全长240km,汽车从甲地开往乙地,行驶速度为vkm/h.(1)汽车从甲地到乙地需要行驶多少小时?(2)如果汽车的行驶速度增加3km/h,那么汽车从甲地到乙地需要行驶多少小时?汽车加快速度后可以早到多少小时?分析提问:(1)本题包含了几个量?它们之间有什么关系?本题包含路程、速度和时间三个量.它们之间具有关系:时间=路程速度.(2)早到的时间与原来需要行驶的时间和加快速度后需要行驶的时间有什么联系?早到的时间=原来需要行驶的时间-加快速度后需要行驶的时间.解:(1)汽车从甲地到乙地需要行驶240vh.(2)如果汽车的行驶速度增加3km/h,那么汽车从甲地到乙地需要行驶240v+3h.汽车加快速度后可以早到(240v-240v)h.【对应训练】张华同学报名参加了某市越野赛10km体验组的比赛,计划以xkm/h的平均速度跑完全程,为了取得更好的成绩,实际比赛时他以计划平均速度的1.2倍跑完了全程.(1)用代数式表示张华同学实际跑完全程所用的时间:101.2xh;(2)王老师也报名参加了此次越野赛10km体验组的比赛,他计划一半路程以ɑkm/h的平均速度前进,而另一半路程以bkm/h(ɑ≠b)的平均速度前进,用代数式表示王老师跑完全程所用的时间.解:一半路程以ɑkm/h的平均速度前进,用时5ɑh,另一半路程以bkm/h的平均速度前进,用时5bh,故王老师跑完全程所用的时间为(5ɑ+5b)h.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:你能分析实际问题中的数量关系,并列出代数式吗?【作业布置】教材习题2.1中选取.2.2代数式的值【教学目标】1.让学生领会代数式值的概念.2.了解求代数式值的解题过程及格式.3.初步领悟代数式的值随字母的取值变化而变化的情况.4.通过学习使学生了解求代数式的值在日常生活中的应用.5.培养学生的探索精神和探索能力.【教学重点】求代数式的值的含义及如何求代数式的值.【教学难点】求代数式的值的含义理解及一些应用.【教学过程】一、情景导入,初步认知通过上节课的学习,我们了解了什么?它的概念是什么?[教学说明]通过复习最近学过的知识,使学生尽快进入学习状态.17
二、思考探究,获取新知1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有的同学每人植树a棵,其余同学植树2棵.你用代数式表示他们共植树的总棵数吗?如果a=3,那么他们共植树多少棵?如果a=4,那么他们共植树又是多少棵?根据题意,他们共植树:×305a+(1-)×305×2=(122a+366)棵;当a=3时,代数式122a+366=122×3+366=732(棵);当a=4时,代数式122a+366=122×4+366=854(棵);我们将上面问题中的计算结果732和854,称为代数式122a+366当a=3和当a=4时的值.[归纳结论]如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时”,一定要按照代数式指明的运算进行.(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a+366中的字母a不能取负数,又如代数式中的字母b不能取零.2.思考:结合上述例题,回答下列问题:(1)求代数式的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?[教学说明]引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.3.(1)当x=-3时,求出代数式x2-3x+5的值;(2)当a=0.5,b=-2时,求的值;(3)当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.[教学说明]点拨:(1)注意书写格式,“当……时”的字样不要丢;(2)代数式中的乘法运算,当其中的字母用数字在替代时,要恢复“×”号;(3)要按照代数式指明的运算顺序进行计算;(4)如果字母的值是负数,代入时应将负数加上括号;如果字母的值是分数,就要计算它的平方、立方,代入时应将分数加上括号;(5)只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值和它对应.三、运用新知,深化理解1.教材P64例2.2.判断题:①当x=时,3x2=3()2=3;②当x=-2时,3x2=3-42=-1.答案:错,错.3.(1)若x+1=4,则(x+1)2=________;(2)若x+1=5,则(x+1)2-1=________.答案:16;24.17
4.当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.5.当a=2,b=-1,c=-3时,求下列各代数式的值;(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解:(1)当a=2,b=-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4(3)当a=2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.6.若x+2y2+5的值为7,求代数式3x+6y2+4的值.分析:比较x+2y2与3x+6y2之间的异同,从而找到关键点进行解题.解:由已知x+2y2+5=7,则x+2y2=2∴3x+6y2+4=3x+2y2+4=3×2+4=10.7.已知a+b=3,求代数式(a+b)2+a+5+b的值.解:(a+b)2+a+5+b=(a+b)2+(a+b)+5因为a+b=3,所以(a+b)2+(a+b)+5=32+3+5=178.对于正数,运算“*”定义为,求.分析:这里“*”告诉我们一个运算关系,,就是说:,按这个运算求.解:因为所以9.某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?分析:今年的产值为(1+10%)a,明年的产值为(1+10%)2a.解:由题意可得,今年的年产值为(1+10%)a亿元,于是明年的年产值为17
(1+10%)2a=1.21a(亿元)若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2=2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预测明年的年产值是2.42亿元.[教学说明]通过巩固训练,让学生学会求代数式的值的方法.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题2.2”中选取.2.3整式的概念第1课时整式【教学目标】1.了解整式的概念.2.理解单项式的系数、次数;多项式的项、项的系数和次数等.3.能确定单项式的系数、次数和多项式的项、次数.4.经历观察、讨论、猜想等数学活动,发展有条理的推理能力,合理的语言表达能力.5.通过积极参与数学学习活动,培养独立思考和合作学习的习惯.【教学重点】单项式的系数、次数,多项式的项、项的系数和次数.【教学难点】单项式的系数、次数和多项式的项、次数.【教学过程】一、情景导入,初步认知1.列出代数式,并试着将代数式分成两类.(1)一个三角尺如图所示,阴影部分所占的面积是_______;(2)某校学生总数为x,其中男生人数占总数的,该校男生人数为_______;(3)一个长方体的底面是边长为a的正方形,高为h,体积是_______;[教学说明]使学生了解整式的实际背景,进一步理解字母表示数的意义,认识代数式的表示作用,既巩固了旧知识,又可以借此引出单项式、多项式及整式的概念.二、思考探究,获取新知1.动脑筋:(1)长为x,宽为0.8的长方形的面积是多少?(2)半径为r的圆的面积是多少?(3)长方体的底面积是边长为x的正方形,高为y,这个长方体的体积是多少?2.观察你所列出的几个式子,它们有什么共同点?[归纳结论]由数与字母的积组成的代数式叫做单项式.单独的一个字母或一个数也是单项式.单项式中,与字母相乘的数叫做单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.3.做一做:填写下表.17
4.下图是某拱形门的示意图,它是由上、下两部分组成,已知上部分的面积为πx2,下部分的面积为xy,则这个图形的面积是多少?5.观察所列代数式πx2+xy,与前面的单项式有什么不同点?[归纳结论]由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称为整数.[教学说明]本节课的概念比较多,采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度.实际教学中学生对整式的概念及单项式的次数把握较好,但对单项式的系数、多项式的项、多项式各项的系数容易出错,对多项式的次数把握不好.三、运用新知,深化理解1.教材P68例题.2.在下列代数式:ab,,ab2+b+1,,x3+x2-3中,多项式有(B)A.2个B.3个C.4个D.5个3.多项式-23m2-n2是(A)A.二次二项式B.三次二项式C.四次二项式D.五次二项式4.下列说法正确的是(B)A.3x2―2x+5的项是3x2,2x,5B.与2x2―2xy-5都是多项式C.多项式-2x2+4xy的次数是3D.一个多项式的次数是6,则这个多项式中只有一项的次数是65.下列说法正确的是(D)A.整式abc没有系数17
B.不是整式C.-2不是整式D.整式2x+1是一次二项式6.(1)单项式:-x2y3的系数是,次数是;(2)多项式:4x3+3xy2-5x2y3+y是次项式答案:(1)-;5;(2)五;四7.整式①,②3x-y2,③23x2y,④a,⑤πx+y,⑥,⑦x+1中单项式有________________,多项式有______________答案:23x2ya;3x-y2πx+yx+18.若|2x-1|+|y-4|=0,试求多项式1-xy-x2y的值.解:由2x-1=0,y-4=0,得x=,y=4.所以当x=,y=4时,1-xy-x2y=1-×4-()2×4=-2.9.已知ABCD是长方形,以DC为直径的圆弧与AB只有一个交点,且AD=a.(1)用含a的代数式表示阴影部分面积;(2)当a=10cm时,求阴影部分面积(π取3.14,保留两个有效数字)答案:(1)s=πa2(2)79cm2[教学说明]对本节知识进行巩固练习.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】17
布置作业:教材“习题2.3”中选取.第2课时合并同类项【教学目标】1.理解同类项的概念,掌握合并同类项的法则;熟练地求多项式的值.2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.3.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.【教学重点】合并同类项的概念、熟练地合并同类项和求多项式的值.【教学难点】找出同类项并正确的合并.【教学过程】一、情景导入,初步认知同学们都有自己的存钱罐吧,想一想,那么多的硬币,你有什么方法可以又快又准确地数出你有多少钱呢?在生活中,我们常常像分硬币这样把具有相同特征的事物归为一类.数学上,在多项式的各个项中,我们也可以把具有相同特征的项归为一类.[教学说明]从学生生活的实际问题出发,诱发学生对新知识的渴求和期望感,激发学生学习的求知欲,提高学生学习的兴趣,在实践中体会成功的快乐;同时也验证了数学来源于生活,与生活密切联系的道理.二、思考探究,获取新知1.如图,在一块长为x,宽为y的草地中间,挖了一个面积为xy的水池后,剩余草地的面积是多少?2.观察所列出的式子xy-xy,式子中的两项xy、xy它们都有什么共同的特征?[归纳结论]含有的字母相同,并且相同字母的指数也分别相同的项称为同类项.[教学说明]通过各种不同类型的同类项题目,让学生充分发挥主体作用,从自己的视角去观察、归纳、总结出同类项的概念.3.多项式x2y+3x+1-4x-5x2y-5中的同类项可以合并吗?[归纳结论]把多项式中的同类项合并成一项,叫做合并同类项.4.根据上面合并同类项的过程,你能总结合并同类项的法则吗?[归纳结论]合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.[教学说明](1)合并的前提是同类项.(2)合并指的是系数相加,“相加”指的是代数和.(3)合并同类项的根据是加法交换律、结合律以及乘法分配律.5.多项式x3-4x2+7x2-2x-5与多项式x3+3x2-6x+4x-5相等吗?[归纳结论]两个多项式分别经过合并同类项后,如果它们的对应项的系数都相等,那么称这两个多项式相等.[教学说明]17
通过合并同类项的例题,一是分解题目的难度,使学生能自然地感受法则的应用,更加清楚明白地理解法则;二是学生刚进入初中学习数学,还要在板书的过程中向学生传达具体的解题过程和格式.三、运用新知,深化理解1.教材P71例1、例2.2.判断下列说法是否正确.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()答案:错,对,对,错,对.3.填空:(1)如果3xky与-x2y是同类项,那么k=_______.(2)如果2axb3与-3a4by是同类项,那么x=_______.y=_______.(3)如果3ax+1b2与-7a3b2y是同类项,那么x=_______.y=_______.(4)如果-3x2y3k与4x2y6是同类项,那么k=_______.答案:(1)2;(2)4、3;(3)2、1;(4)2.4.下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4(2)3x+2y=5xy(3)7x2-3x2=4(4)9a2b-9ba2=0答案:略.5.合并下列多项式中的同类项.(1)2a2b-3a2b+a2b(2)a3-a2b+ab2+a2b-ab2+b3(3)6a2-5b2+2ab+5b2-6a2分析:用不同的标志标出各同类项,会减少运算错误,当然熟练后可以不再标出.解:(1)原式=(2-3+)a2b=-a2b(2)=a3+(-a2b+a2b)+(ab2-ab2)+b3=a3+(-1+1)a2b+(1-1)ab2+b3=a3+b3(3)(找)=6a2-6a2-5b2+5b2+2ab(搬)=(6a2-6a2)+(-5b2+5b2)+2ab=2ab(合)6.先标出下列各多项式的同类项,再合并同类项.17
(1)3x-2x2+5+3x2-2x-5(2)a3+a2b+ab2-a2b-ab2-b3解:(1)=3x-2x-2x2+3x2+5-5=(3x-2x)+(-2x2+3x2)+(5-5)=(3-2)x+(-2+3)x2+(5-5)=x+x2(2)=a3+(a2b-a2b)+(ab2-ab2)-b3=a3-b37.求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.解:=3x2-2x2+x2+4x-x-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1当x=-3时,原式=2×(-3)2-1=17.8.求下列多项式的值.(1)7x2-3x2-2x-2x2+5+6x,其中x=-2.(2)5a-2b+3b-4a-1.其中a=-1,b=2.解:(1)7x2-3x2-2x-2x2+5+6x,=(7-3-2)x2+(-2+6)x+5=2x2+4x+5当x=-2.时,原式=2×(-2)2+4×(-2)+5=5(2)5a-2b+3b-4a-1.=(5-4)a+(-2+3)b-1=a+b-1当a=-1,b=2.时,原式=(-1)+2-1=0[教学说明]进一步巩固基本知识,渗透数学分类思想,使知识结构完善.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“练习”.2.4整式的加法和减法第1课时去括号法则【教学目标】1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.经历类比带有括号的有理数的化简,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.培养学生主动探究、合作交流的意识,严谨治学的学习态度.【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】17
准确理解去括号法则.【教学过程】一、情景导入,初步认知1.多项式8a+2b-(5a-b)中有同类项吗?2.想一想怎样才能合并同类项?[教学说明]通过两个问题的复习,让学生很自然的在复习旧知中进入本节课的学习.实现新旧知识的衔接和统一.二、思考探究,获取新知1.根据加法结合律,去掉下面式子中的括号,填空:a+(b+c)=_______;a+(b-c)=_______.2.观察上面的两个等式,等式从左到右有何改变?你能用自己的语言叙述一下吗?[归纳结论]括号前面是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变.[教学说明]通过让学生观察、思考、探索、交流来亲身感受“去括号法则”的探究发现过程,体会成功的快乐.3.议一议:a+b与a-b的相反数分别是多少?[归纳结论]a+b的相反数为-a-b;a-b的相反数为b-a.[教学说明]先独立思考,然后猜想结论,再交流讨论,最后找学生回答结果及理由.4.结论讨论:(1)a-(b-c)=a+(-b+c)=_______;(2)a-(-b-c)=a+(b+c)=_______.5.上面两个等式从左到右有何改变?你能用自己的语言叙述一下吗?[归纳结论]括号前面是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.[教学说明]通过让学生观察、思考,然后自己总结、归纳出规律.三、运用新知,深化理解1.教材P75例42.下列各式中,与a-b-c的值不相等的是(B)A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)+(-b+a)3.化简-[0-(2p-q)]的结果是(C)A.-2p-qB.-2p+qC.2p-qD.2p+q4.先去括号,再合并同类项:(1)(2x+3y)+(5x-4y)(2)(8a-7b)-(4a-5b)(3)(8x-3y)-(4x+3y-z)+2z(4)(2x-3y)-3(4x-2y)(5)3a2+a2-2(2a2-2a)+(3a-a2)(6)3b-2c-[-4a+(c+3b)]+c答案:(1)7x-y(2)4a-2b(3)4x-6y+3z(4)-10x+3y(5)7a-a2(6)4a-2c[教学说明]让学生巩固所学知识,检验本节课对知识的掌握情况,并对书写格式及时地订正和指导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题2.4”中选取.17
第2课时整式的加法和减法【教学目标】1.能运用合并同类项和去括号法则进行整式的加法和减法.2.经历将整式去括号、合并同类项的化简过程,培养学生将所学知识点结合使用的能力.3.在观察、探索的过程中,培养学生主动归纳、学习的意识.【教学重点】熟练进行整式的加法和减法.【教学难点】准确理解整式的加法和减法的意义,解决实际问题.【教学过程】一、情景导入,初步认知1.化简:2(a+1)-a.2.想一想,如何进行整式的加减运算.[教学说明]通过两个问题,回顾前面所学过的合并同类项和去括号法则,引出新的知识.二、思考探究,获取新知1.计算:(1)(5x-1)+(x+1)(2)(2x+1)-(4-2x)2.动脑筋:有两个大小不一样的长方体纸盒,如图所示,已知大纸盒的体积是小纸盒体积的24倍.(1)这两个纸盒的体积和为多少?(2)大纸盒与小纸盒的体积差为多少?[教学说明]让学生加强对新知的理解和应用,培养学生分析问题、解决问题的能力.三、运用新知,深化理解1.教材P75例5、62.若两个整式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.解:另一个加式=(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.3.求3a2-2ab+6与5a2-6ab-7的和与差.答案:和是8a2-8ab-1,差是-2a2+4ab+13.4.先化简,再求值:5(3a2b-ab2)-(ab2+3a2b),其中a=,b=-1.解:化简,得12a2b-6ab2,把a=,b=-1化入化简,得-6.5.求下列式子的值:2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3.解:化简,得5mn-6m-6n,变形为5mn-6(m+n),把mn=-3,m+n=2代入得-27.6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.解:由A+B+C=0,得C=-A-B=-(a2+b2-c2)-(-4a2+2b2+3c2)=-a2-b2+c2+4a2-2b2-3c2=3a2-3b2-2c2.17
7.为了加强地球和月球,人们在地球和月球上各加上了一道铁箍,现在想把铁箍各向外扩展1米,问哪个所增加的铁箍长.解:设地球的半径为R米,月球的半径为r米,则地球上的铁箍增加的长度为2π(R+1)-2πR=2π月球上的铁箍增加的长度为2π(r+1)-2πr=2π所以两者所增加的铁箍的长度是相同的.[教学说明]让学生巩固所学知识,能熟练将各知识点结合使用.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题2.4”中选取.章末复习【教学目标】1.用字母表示数.2.列出代数式.3.对代数式进行加减.4.合并同类项.5.先化简,再求值.6.加强学生对所学知识的理解.7.提高运用知识解决问题的能力.8.在观察、想象、推理、交流的数学活动中,初步养成言之有据的习惯,并初步形成积极参与数学活动,与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】列代数式,求代数式的值.【教学难点】代数式的化简.【教学过程】一、知识结构[教学说明]揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.代数式:把数与表示数的字母用运算符号连接而成的式子叫做代数式.单独的一个字母或一个数也是代数式.2.用字母表示式子时应注意:①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写.省略乘号时,一般把数字写在字母的前面.②两个相同字母相乘时,也写成乘方的形式.③当数字1与字母相乘时,1也省略不写.3.代数式的值:如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.4.单项式:由数与字母的积组成的代数式叫做单项式.单独的一个字母或一个数也是单项式.单项式中,与字母相乘得数叫做单项式的系数.17
一个单项式中,所有字母的指数的和叫做这个单项式的次数.5.多项式:由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.6.整式:单项式和多项式统称为整式.7.同类项:含有的字母相同,并且相同字母的指数也分别相同的项称为同类项.把多项式中的同类项合并成一项,叫做合并同类项.8.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.9.去括号法则:括号前面是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变.括号前面是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.[教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列语句正确的是(A)A.0是代数式.B.S=2πR是一个代数式.C.单独的一个数不是代数式.D.单独一个字母a不是代数式.2.有一个两位数,十位数字是a,个位数字是b,若把它们的位置交换,得到新的两位数是(C)A.abB.baC.10b+aD.10a+b3.计算:(2x2-3xy+6)-2(3y2x-xy-3)解:原式=2x2-3xy+6-6xy2+2xy+6=2x2-6xy2-xy+124.先化简,再求值:-5+x2-5x-x2+3x+4,其中x=-.解:原式=(x2-x2)+(-5x+3x)+(-5+4)=-2x-1把x=-代入原式=-2×(-)-1=05.某物体运动的速度与时间的关系如下表:(1)请你用含t的代数式来表示该物体运动速度y.(2)当该物体运动的时间为20秒时,此时物体的速度是多少?17
答案:(1)y=0.2t+0.5;(2)4.5(米/秒).6.1千瓦时电(即通常所说的1度电)可供一盏40瓦的电灯点亮25小时.(1)1千瓦时的电量可供n瓦的电灯点亮多少时间?(2)若每度电的电费为a元,一个100瓦的电灯使用12时的电费是几元?答案:(1)时,(2)1.2a元.[教学说明]通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.已知多项式ax+bx合并的结果为0,则下列说法正确的是(D)A.a=b=0B.a=b=x=0C.a-b=0D.a+b=02.某同学自己装订笔记本,第一本用了a张纸,第二本用的纸张数是第一本的,两本共用了(A)张纸.A.a+aB.a-aC.a+aD.a+3.已知x2+2xy=3,y2=2,则代数式2x2+4xy+y2的值为(A)A.8B.9C.11D.124.先列出式子,再求结果:一个代数式加上5x2+4x-1得6x-8x2+2,求这个代数式.解:6x-8x2+2-(5x2+4x-1)=6x-8x2+2-5x2-4x+1=-13x2+2x+35.请写出一个含x的代数式.要求:无论x取什么有理数,代数式的值总是非负数.答案:(x2+1)等6.如图:用代数式表示阴影部分的面积.答案:(a-b)h7.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度按0.60元收费.(1)若某住户四月份的用电量是a度(a≤140),这个用户四月份应交多少电费?(2)若该住户五月份的用电量是a度(a>140),则他五月份应交多少电费?(3)若该住户六月份的用电量是200度,那么他六月份应交多少电费?答案:(1)当a≤140度时,应交电费0.45a元;(2)当a>140度时,应交电费为(0.6a-21)元;(3)140×0.45+(200-140)×0.60=99(元).17
8.同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为a(7<a≤23),分别用代数式表示同一时刻的巴黎时间和东京时间.(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻的巴黎时间、东京时间分别为几时?答案:(1)巴黎:a-7;东京:a+1(2)巴黎:15:08;东京:23:08[教学说明]进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?【课后作业】布置作业:教材“复习题”中选取.17
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)